Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording

Department of Electrical Engineering and Computer Science, University of Michigan
IEEE Transactions on Biomedical Engineering (Impact Factor: 2.35). 03/1986; DOI: 10.1109/TBME.1986.325895
Source: IEEE Xplore

ABSTRACT Thin-film arrays of extracellular recording electrodes have been developed for use in studies of information processing in neural structures and eventual use in closed-loop control of neural prostheses. These probes consist of a silicon substrate which supports an array of thin-film conductors. The conductors are insulated above and below with deposited dielectrics. The electrode sites are defined by openings in the upper dielectric layer and are inlaid with gold to form low-impedance recording surfaces. The probes are typically 15 pim in thickness with shank widths as narrow as 20 ¿m. The probe fabrication process is compatible with the inclusion of signal processing circuitry directly on the probe substrate. A 12 channel on-chip signal processor design with per-channel gain of 100, bandwidth of 100 Hz-6 kHz, multiplexed output, and recording-site impedance check capability is described. The probes have adequate strength to penetrate the gerbil pia-arachnoid layer and have recorded single neuron activity of over 500 ¿V peak-to-peak from tip, side, and mid-carrier sites. Signal-to-noise ratios as high as 10:1 have been achieved. An equivalent circuit model for the conducting leads, the recording site, and the electrode-electrolyte interface is described. Development of biocompatible insulation and encapsulation materials for long-term implantation of active probes is underway.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracortical brain computer interfaces (iBCIs) are being developed to enable people to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software that decodes the user's intended movement from those signals. Here, we focus on recent advances in these two areas, placing special attention on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology's capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications.
    Annual review of biomedical engineering 07/2013; 15:383-405. · 11.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.
    Cardiovascular Engineering 09/2010; 10(3):91-108. · 0.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications.
    Biomedical Materials 01/2014; 9(1):015009. · 2.17 Impact Factor