Article

Binding of metals to macromolecular organic acids in natural waters

Source: OAI

ABSTRACT Trace metal speciation and bioavailability have become keys to current day toxicity and risk assessments. For many metals, macromolecular organic acids constitute the major ligand in fresh water and soil solution. Therefore, understanding their characteristics and behaviour is necessary for understanding trace metal behaviour. This study comprises investigations of the proton- and copper-binding properties of hydrophobic and hydrophilic dissolved organic matter fractions, and competition effects of iron(III) and aluminium. The solutions studied were a forest floor solution and a municipal solid waste incinerator bottom ash leachate. Two geochemical models (SHM and NICA-Donnan) were tested and calibrated against the experimental data. A structural analysis of the binding mode of iron(III) to fulvic acid in acid aqueous solutions was made using extended X-ray absorption fine structure (EXAFS) spectroscopy. Dissolved organic carbon (DOC) in the bottom ash leachate had fulvic acid-like properties and was dominated by the hydrophilic acid fraction. Three organic fractions (hydrophobic, transphilic and hydrophilic) were isolated from the forest floor solution using an XAD-8/XAD-4 tandem. All fractions were characterised by distinct but differing proton-binding properties, suggesting a more acidic character than 'generic' fulvic acid. The copper-binding isotherms were very similar for all three fractions and suggested strong copper binding to a small number of sites. In general, both models tested could be adjusted to obtain good fits to data on both proton- and copper-binding, but iron(III) and aluminium competition was better predicted by the SHM than the NICA-Donnan model. Only mononuclear iron(III) complexes were included in the model calculations, as the EXAFS study showed that these ¬dominated in the aqueous phase. Studies on untreated soil solution indicated that the three isolated fractions were the only contributors to the observed copper binding and together constitute the 'active' DOC fraction. Thus, combination of Leenheer fractionation data with the model parameters derived in this study is recommended for improved predictions of trace metal speciation in soil solutions. However, further studies along this research line, including other samples and trace metals, are highly recommended.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humic Ion-Binding Model VI, a discrete site/electrostatic model of the interactions of protons and metals with fulvic and humic acids, is applied to 19 sets of published data for proton binding, and 110 sets for metal binding. Proton binding is described with a site density, two median intrinsic equilibrium constants, two parameters defining the spread of equilibrium constants around the medians, and an electrostatic constant. Intrinsic equilibrium constants for metal binding are defined by two median constants, log KMA and log KMB, which refer to carboxyl and weaker-acid sites respectively, together with a parameter, LK1, defining the spreads of values around the medians. A further parameter, LK2, takes account of small numbers of strong binding sites. By considering results from many data sets, a universal average value of LK1 is obtained, and a correlation established between log KMB and log KMA. In addition, a relation between LK2 and the equilibrium constant for metal-NH3 complexation is tentatively suggested. As a result, metal-binding data can be fitted by the adjustment of a single parameter, log KMA. Values of log KMA are derived for 22 metal species. Model VI accounts for competition and ionic strength effects, and for proton-metal exchange.
    Aquatic Geochemistry 02/1998; 4(1):3-47. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely accepted that the bioavailability, toxicity, and mobility of trace metals are highly dependent on complexation reactions with functional groups in natural organic matter (NOM). In this study, the coordination chemistry of Cd in NOM was investigated by extended X-ray absorption fine structure spectroscopy. Soil organic matter (SOM) from different types of organic soils and dissolved organic matter (DOM) from an organic and a mineral soil horizon of a Spodosol and aquatic DOM from Suwannee River were investigated. In SOM samples (1000-25000 microg of Cd g(-1), pH 4.6-6.6), Cd was coordinated by 1.0-2.5 S atoms at a distance of 2.49-2.55 A and by 3.0-4.5 O/N atoms at a distance of 2.22-2.25 A. In DOM samples (1750-4250 microg of Cd g(-1), pH 5.4-6.3), Cd was coordinated by 0.3-1.8 S atoms at a distance of 2.51-2.56 A and 3.6-4.5 O/N atoms at a distance of 2.23-2.26 A. In both SOM and DOM samples a second coordination shell of 1.7-6.0 carbon atoms was found at an average distance of 3.12 A. This is direct evidence for inner-sphere complexation of Cd by functional groups in NOM. Furthermore, ion activity measurements showed that less than 1% of total Cd was in the form of free Cd2+ in our samples. Bond distances and coordination numbers suggest that Cd complexed in SOM and DOM is a mixture of a 4-coordination with S (thiols) and 4- and 6-coordinations with O/N ligands. Given that Cd-S associations on average are stronger than Cd-O/N associations, our results strongly indicate that reduced S ligands are involved in the complexation of Cd by NOM also at native concentrations of metal in oxidized organic-rich soils and in humic streams.
    Environmental Science and Technology 06/2005; 39(9):3048-55. · 5.26 Impact Factor
  • Environmental Science and Technology 10/1994; 28(11):1853-8. · 5.26 Impact Factor

Full-text (2 Sources)

View
56 Downloads
Available from
May 22, 2014