Article
An $L (1/3 + \varepsilon)$ Algorithm for the Discrete Logarithm Problem for Low Degree Curves
04/2007;
Source: arXiv

Article: Rapport d'activité simplifié du LIX
 [Show abstract] [Hide abstract]
ABSTRACT: Dans ce mémoire, nous présentons divers travaux sur le thème de l'algorithmique des courbes algébriques en vue d'applications à la cryptologie. Nous décrivons des algorithmes pour le calcul de logarithmes discrets, problème dont la difficulté est à la base de la sécurité des cryptosystèmes s'appuyant sur les courbes. Une première classe d'algorithmes regroupe les techniques du type «calcul d'index»; une seconde les méthodes liées à la restriction de Weil. Viennent ensuite des algorithmes permettant le calcul du nombre de points d'une courbe définie sur un corps fini. Ceuxci se répartissent en trois catégories: l'algorithme de Schoof et ses généralisations, les algorithmes padiques s'appuyant sur un relèvement canonique, et les méthodes padiques issues de l'algorithme de Kedlaya. Nous traitons d'autres aspects pouvant être utiles lors de la conception de cryptosystèmes à bases de courbes, en particulier des formules efficaces pour la loi de groupe en genre 2, issues de la théorie des fonctions Thêta. Pour finir, nous mentionnons des travaux liés à l'arithmétique efficace et son implantation logicielle, notamment des travaux sur l'algorithme de SchönhageStrassen et sur une bibliothèque pour les corps finis.  [Show abstract] [Hide abstract]
ABSTRACT: We propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties of small dimension. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a wellsuited curve. We apply this algorithm to the Weil restriction of elliptic curves and hyperelliptic curves over small degree extension fields. In particular, our attack can solve an elliptic curve discrete logarithm problem defined over Fq3 in heuristic asymptotic running time ; and an elliptic problem over Fq4 or a genus 2 problem over Fq2 in heuristic asymptotic running time .Journal of Symbolic Computation 01/2009; · 0.39 Impact Factor
Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.