3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy

Philosophical Magazine Letters (Impact Factor: 1.16). 01/2006; DOI: 10.1080/09500830600643270
Source: OAI

ABSTRACT The pair-correlation function applied to 3D Atom Probe reconstructed volumes has been used to study the influence of a pre-ageing treatment (363 K) on the early stages of precipitation at 458K in an Al-Mg-Si 6016 alloy. Mg-Si short-range positive pair correlation (clustering) is shown to form after a pre-ageing treatment. The hetero-atomic clusters are thought to act as preferential nucleation sites and lead to a finer dispersion of precipitates after ageing.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy. Significantly, the atoms are located to their true lattice sites not by an averaging, but by triangulation of each particular atom detected in the 3D atom-by-atom reconstruction. Lattice rectification of raw APT reconstruction provides unprecedented detail as to the fundamental solute hierarchy of the solid solution. Atomic clustering has been recognized as important in affecting alloy behavior, such as for the Al-1.1 Cu-1.7 Mg (at. %) investigated here, which exhibits a remarkable rapid hardening reaction during the early stages of aging, linked to clustering of solutes. The technique has enabled lattice-site and species-specific radial distribution functions, nearest-neighbor analyses, and short-range order parameters, and we demonstrate a characterization of solute-clustering with unmatched sensitivity and precision.
    Microscopy and Microanalysis 03/2011; 17(2):226-239. · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muon spin methods are very sensitive to nanoscale defects such as trace elements and vacancies in metals. This sensitivity is required when investigating Al-Mg-Si alloys, a complicated system in which diffusion-controlled phase transformations are responsible for the most important hardening mechanisms. We present muon spin relaxation experiments conducted on Al-Mg-Si alloys at measurement temperatures in the range 20–300K. Varying the alloy composition and heat treatment, we find differences in muon depolarization in several temperature regimes. This reflects differences in concentration of several types of muon-trapping defects. We identify free solute atom and vacancy regimes, and confirm that the concentration of these defects decreases when an alloy is annealed at low temperature. We further attribute one regime to Mg-Si vacancy clustering, a mechanism required for precipitation hardening during aging. After storage at room temperature, muon trapping in this regime is more pronounced for a Mg-rich alloy than a Mg-Si-balanced alloy.
    Physical review. B, Condensed matter 09/2012; 86(10). · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fluid secretion model predicts that intestinal obstruction disorders can be alleviated by promoting epithelial Cl(-) secretion. The adenosine 3',5'-cyclic monophosphate (cAMP)-activated anion channel CFTR mediates Cl(-)-dependent fluid secretion in the intestine. Although the role of the ClC-2 channel has not been determined in the intestine, this voltage-gated Cl(-) channel might compensate for the secretory defects observed in patients with cystic fibrosis and other chronic constipation disorders. We investigated whether mice that lack ClC-2 channels (Clcn2(-/-)) have defects in intestinal ion transport. Immunolocalization and immunoblot analyses were used to determine the cellular localization and the amount of ClC-2 expressed in mouse early distal colon (EDC) and late distal colon (LDC). Colon sheets from wild-type and Clcn2(-/-) littermates were mounted in Ussing chambers to determine transepithelial bioelectrical parameters and Na(+), K(+), and Cl(-) fluxes. Expression of ClC-2 was higher in the basolateral membrane of surface cells in the EDC compared with the LDC, with little expression in crypts. Neither cAMP nor Ca(2+)-induced secretion of Cl(-) was affected in the EDC or LDC of Clcn2(-/-) mice, whereas the amiloride-sensitive short-circuit current was increased approximately 3-fold in Clcn2(-/-) EDC compared with control littermates. Conversely, electroneutral Na(+), K(+), and Cl(-) absorption was dramatically reduced in colons of Clcn2(-/-) mice. Basolateral ClC-2 channels are required for colonic electroneutral absorption of NaCl and KCl. The increase in the amiloride-sensitive short-circuit current in Clcn2(-/-) mice revealed a compensatory mechanism that is activated in the colons of mice that lack the ClC-2 channel.
    Gastroenterology 11/2011; 142(2):346-54. · 12.82 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014