Hydrological connectivity drives patterns of macroinvertebrate biodiversity in floodplain rivers of the Australian wet ⁄dry tropics

Freshwater Biology (Impact Factor: 3.93). 03/2009; 54(3):549–571. DOI: 10.1111/j.1365-2427.2008.02130.x
Source: OAI

ABSTRACT 1. Floodplain rivers in Australia's wet ⁄dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna. 2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta. 3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation. 4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages. 5. Conservation of the biodiversity in Australia's wet ⁄dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers. Yes Yes

  • [Show abstract] [Hide abstract]
    ABSTRACT: Summary1. The dry tropics are characterised by episodic summer rainfall such that the majority of annual river flow occurs in a short period of time. This dryland hydrological cycle leads to variably connected channels and waterholes along the length of a river bed.2. We investigated the seasonal changes in biophysical characteristics and macroinvertebrate assemblage composition in dry‐tropics rivers at 15 sites on four rivers, each sampled five times (representing one annual hydrological cycle), in the Burdekin catchment, north Queensland, Australia.3. Assemblages and their temporal trajectories differed among seasons, sites and habitats, even within the same habitat and/or river. Wet season flooding did not appear to ‘reset’ assemblages, with post‐wet season assemblages differing between years.4. We found no consistent pattern in taxonomic richness over time, and sites within rivers showed no consistent convergence or divergence (i.e. turnover) in macroinvertebrate assemblage composition. However, biophysical variables associated with the rigours of the late dry season had significant effects on macroinvertebrate assemblages, highlighting the variable and often harsh conditions of dry‐tropics rivers. Underlying these patterns were different resistance and resilience traits of invertebrates (such as colonisation and establishment abilities), as well as the local‐scale effects of biophysical variables.5. The dynamic nature of dryland rivers presents major challenges to monitoring programmes, and our results suggest a more complex scenario for monitoring and management than previously described.
    Freshwater Biology 04/2013; 58(4). · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Rivers and floodplains are among the most threatened ecosystems. Hydroelectric power plants and embankments have reduced the hydrological connectivity between rivers and their floodplain channels, leading to loss of freshwater habitats and biological communities. To prevent and reverse such loss, numerous restoration programmes have aimed at rejuvenating the lateral hydrological connectivity between rivers and floodplain channels. Despite considerable global attention, we know remarkably little about the ecological benefits of floodplain restoration programmes. 2. We analysed the functional diversity of different macroinvertebrate groups (natives and aliens) along a gradient of lateral hydrological connectivity on the Rhône river in France. We used 36 sampling sites to describe the functional diversity (Rao's quadratic entropy) before and after the enhancement of the lateral hydrological connectivity by restoration. The effects of restoration on functional diversity were tested for each macroinvertebrate group and at multiple spatial levels (alpha and beta). 3. Before restoration, alpha functional diversity of the entire macroinvertebrate community peaked in sites with a high lateral connectivity. The contribution of the native groups to functional diversity was higher than that of the alien group. The latter was not constrained by high values of lateral hydrological connectivity and reached a maximum in highly connected sites. 4. After restoration, within-site functional diversity (alpha FD) declined linearly following the enhancement of lateral hydrological connectivity. The restoration operations increased the contribution of the aliens to functional diversity and reduced the contribution of a group of native taxa. In addition, among-sites functional diversity (beta FD) was successfully enlarged by restoration. 5. Synthesis and applications. The lateral hydrological connectivity (LHC) represents a key parameter for explaining the functional diversity (FD) of macroinvertebrates in a floodplain ecosystem. Our results demonstrate that restoration-induced changes to functional diversity can be predicted. Controversially, restoration-induced enhancement of lateral hydrological connectivity increased the functional diversity of the alien macroinvertebrates. However, these species contributed only to a small part of the total macroinvertebrate functional diversity. We recommend that restoration programmes diversify the levels of lateral hydrological connectivity among the channels to ensure an optimal functional diversity at the floodplain scale.
    Journal of Applied Ecology 02/2013; 50(1):97-106. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In floodplain ecosystems, the lateral hydrological connectivity between the main river channel and the secondary channels plays a major role in shaping both the habitat conditions and the macroinvertebrate diversity. Among other threats, human activities tend to reduce the lateral connectivity, which increases floodplain terrestrialization and induces a loss of aquatic biodiversity. Consequently, the restoration of lateral connectivity is of growing concern. We studied four secondary channels of the Rhône floodplain that were subjected either to no restoration or to three different restoration measures (river flow increase only, flow increase plus dredging and flow increase plus reconnection to the river). Macroinvertebrate and environmental data were analysed one year before and during a period of five years after restoration. We expected a progressive increase of lateral connectivity according to the type of restoration. Changes in macroinvertebrate assemblages were predicted to be towards more rheophilic communities and proportionally related to the changes in lateral connectivity.In the reconnected channel, lateral connectivity increased and remained high five years after restoration. In the dredged channel, the immediate increase of the lateral connectivity metric induced by sediment removal was followed by a rapid decrease. In the unrestored channel and the channel only influenced by flow increase, the metric remained constant in time. The macroinvertebrate composition and the rarefied EPT richness changes were proportionally related to the changes in lateral connectivity. Alien species richness and densities increased progressively in all channels after restoration. Our results showed that modifications of the lateral connectivity lead to predictable changes in macroinvertebrate diversity. Synergistic interactions between restoration and longer-term changes (e.g. climatic change, invasion of alien species) encourage long-term monitoring to assess the durability and trends of restoration measures. Copyright © 2012 John Wiley & Sons, Ltd.
    River Research and Applications 07/2012; · 1.97 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014