Article

On Iterative Equalization, Estimation, and Decoding

07/2003;
Source: CiteSeer

ABSTRACT We consider the problem of coded data transmission over an inter-symbol interference (ISI) channel with unknown and possibly time-varying parameters. We propose a low-complexity algorithm for joint equalization, estimation, and decoding using an estimator, which is separate from the equalizer. Based on existing techniques for analyzing the convergence of iterative decoding algorithms, we show how to find powerful system configurations. This includes the use of recursive precoders in the transmitter. We derive novel a-posteriori probability equalization algorithms for imprecise knowledge of the channel parameters. We show that the performance loss implied by not knowing the parameters of the ISI channel is entirely a loss in signal-to-noise ratio for which a suitably designed iterative receiver algorithm converges.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a receiving scheme intended to combat the detrimental effects of intersymbol interference for digital transmissions protected by convolutional codes. The receiver performs two successive soft-output decisions, achieved by a symbol detector and a channel decoder, through an iterative process. At each iteration, extrinsic information is extracted from the detection and decoding steps and is then used at the next iteration as in turbo-decoding. From the implementation point of view, the receiver can be structured in a modular way and its performance, in bit error rate terms, is directly related to the number of modules used. Simulation results are presented for transmissions on Gauss and Rayleigh channels. The results obtained show that turbo-equalization manages to overcome multipath effects, totally on Gauss channels, and partially but still satisfactorily on Rayleigh channels.
    European Transactions on Telecommunications 08/1995; 6(5):507 - 511. · 1.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the turbo equalization approach to coded data transmission over channels with intersymbol interference. In the original system invented by Douillard et al. (1995), the data are protected by a convolutional code and the receiver consists of two trellis-based detectors, one for the channel (the equalizer) and one for the code (the decoder). It has been shown that iterating equalization and decoding tasks can yield tremendous improvements in bit error rate. We introduce new approaches to combining equalization based on linear filtering, with decoding.. Through simulation and analytical results, we show that the performance of the new approaches is similar to the trellis-based receiver, while providing large savings in computational complexity. Moreover, this paper provides an overview of the design alternatives for turbo equalization with given system parameters, such as the channel response or the signal-to-noise ratio
    IEEE Transactions on Communications 06/2002; · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel adaptive nonlinear equalizer for fast time-varying multipath channels that combines the channel estimation and data detection tasks is presented. The a posteriori probabilities (APPs) of the states of the intersymbol interference (ISI) channel are recursively computed from the received data by a symbol-by-symbol (SbS) detector and are then employed by a Kalman-type nonlinear channel estimator. Robust channel tracking and good data-detection performance are obtained, with a reasonable receiver complexity
    IEEE Transactions on Communications 05/1998; · 1.75 Impact Factor

Full-text

View
1 Download
Available from