Article

Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs

FEMS microbiology letters. 2004. 230(1): 35-39 01/2006;
Source: OAI

ABSTRACT http://www.elsevier.com/locate/issn/03781097 Canine intestinal lactic acid bacterium (LAB) population in four fistulated dogs was cultured and enumerated using MRS agar. LAB levels ranging from 1.4×106 to 1.5×107 CFU ml-1 were obtained in jejunal chyme. In the fecal samples 7.0×107 and 2.0×108 CFU g-1 were detected. Thirty randomly selected isolates growing in the highest sample dilutions were identified to species level using numerical analysis of 16 and 23 S rDNA RFLP patterns (ribotyping) and 16S rDNA sequence analysis. According to these results, Streptococcus alactolyticus was the dominant culturable LAB species in both faeces and jejunal chyme. In addition, Lactobacillus murinus and Lactobacillus reuteri were detected.

0 Bookmarks
 · 
57 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus alactolyticus strain FGM, isolated from chicken cecum, was used to increase the extract yield of polysaccharides during Astragalus membranaceus fermentation. It was previously demonstrated that polysaccharides from fermented A. membranaceus by S. alactolyticus had some similar properties to those from A. membranaceus in terms of its ability to help heal hepatic fibrosis in rats and modulate immunopotentiation of broiler chicken. However, methods to increase the yield of the polysaccharides during fermentation of A. membranaceus are not well understood. In this paper, we investigated the involvement of uridine diphosphate (UDP)-glucose 4-epimerase (galE) and glucan-1,6-α-glucosidase (dexB) during A. membranaceus fermentation through real-time reverse transcription quantitative PCR. The galE and dexB genes of S. alactolyticus were cloned by homology-based cloning and the genome walking method for the first time, and the 3D structure of dexB was analyzed by Swiss-PdbViewer 4.0.1 software. The expression of both the galE and dexB genes in A. membranaceus fermentation was studied using the determined ideal reference gene ldh for transcript normalization. The results showed that these two genes were both highly induced and peaked after 12 h of fermentation. The expression level of galE was stepwise increased from 48 to 72 h, while dexB transcripts were markedly increased at 60 h and decreased by 72 h. These data suggested that dexB and galE of S. alactolyticus strain FGM were involved in the regulation of A. membranaceus fermentation and they might play some roles in the increase of polysaccharides.
    Applied Microbiology and Biotechnology 04/2013; · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to isolate and identify Lactobacillus spp. isolates from faeces of a healthy dog, and to characterize their potential as probiotics in order to evaluate their possible use as probiotics for dogs. An in vitro approach was used to characterize the isolates as potential probiotics including the evaluation of pH and bile salts tolerance, production of antimicrobial substances, biofilm formation on glass and polystyrene surfaces, aggregation ability and adhesion to canine intestinal mucus. The isolates survived to different pH and bile salts conditions, inhibited the in vitro growth of Escherichia coli and Clostridium perfringens, and adhered to glass and intestinal mucus. The properties shown by these isolates may indicate that they could colonize and persist in the gastrointestinal tract and induce beneficial effects to the host. The evaluation of native canine isolates and future experimental feeding assays may be useful tools to develop probiotics to improve animal health and reduce the risk of gastrointestinal disorders.
    Journal of Applied Microbiology 07/2008; 104(6):1718-25. · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies examining the canine intestinal microflora have focused on cultivation of bacteria from intestinal content. Recently, it has been recognized that the majority of bacteria cannot be identified using standard culture techniques. The aim of this study was to describe the composition and dynamics of the canine intestinal microflora using molecular methods based on identification of the 16S ribosomal DNA (16S rDNA) and to evaluate the clinical use of a 13C-glycocholic acid blood test (13CGCBT) as a serum marker for small intestinal bacterial biomass. Intestinal content was obtained from healthy dogs and the microflora was characterized in different compartments of each dog by denaturing gradient gel electrophoresis (DGGE) and comparative 16S rDNA analysis. A 13C-glycocholic acid blood test (13C-GCBT) was developed as a marker for small intestinal bacterial biomass and the influence of tylosin administration on the 13C-GCBT, serum concentrations of cobalamin, folate, and unconjugated cholic acid (SUCA) was evaluated. There was marked variation in DGGE profiles between individual dogs and also between different intestinal compartments within dogs. DGGE profiles from duodenal juice samples collected endoscopically at different time-points varied within individuals, possibly due to variations over time or a slight variation in sampling location. Direct sequencing revealed 106 individual 16S rDNA sequences. Forty-two sequences showed less than 98% similarity to described sequences in public databases and may constitute previously uncharacterized bacterial species. Serum folate concentrations, SUCA, and the cumulative percent dose/min of 13C administered as 13C-glycocholic acid (CUMPCD) increased significantly following tylosin administration (p<0.01). The results indicate that dogs have a complex intestinal microflora with marked differences between individual dogs. Different intestinal compartments appear to host a unique microflora and the assessment of a fecal sample does not yield accurate information about the composition of the microflora in proximal compartments of the gut. The intestine harbors many previously uncharacterized bacterial species. The clinical significance of these uncharacterized intestinal bacterial species needs to be further investigated in dogs with gastrointestinal disease. Increased serum folate, SUCA, and CUMPCD in the 13C-GCBT suggest that, in the dogs described here, tylosin administration increased the biomass of organisms carrying out these metabolic functions.

Full-text (2 Sources)

View
7 Downloads
Available from
Jun 4, 2014