Article

La estadística en la investigación médica: mesa redonda

Questiio: Quaderns d'Estadistica, Sistemes, Informatica i Investigació Operativa, ISSN 0210-8054, Vol. 25, Nº. 1, 2001, pags. 121-156
Source: OAI

ABSTRACT Este artículo es una transcripción de las conferencias dictadas en la mesa organizada en el 4º Congreso Galego de Estatistica y Investigación de Operacions que tuvo lugar en Santiago de Compostela en noviembre de 1999. Los autores discuten sobre el posible uso o abuso de la estadística en artículos científicos, sobre lo que se necesitaría para alcanzar la interdisciplinariedad y lo que se entiende por éxito profesional. Se define la disciplina (bioestadística) y se identifica a sus profesionales (bioestadísticos). Se discute sobre el papel de un bioestadístico en un equipo de investigación médico y se repasan las dificultades que tienen los médicos para realizar estudios clínico-epidemiológicos.

0 Bookmarks
 · 
81 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reports of clinical trials often contain a wealth of data comparing treatments. This can lead to problems in interpretation, particularly when significance testing is used extensively. We examined 45 reports of comparative trials published in the British Medical Journal, the Lancet, or the New England Journal of Medicine to illustrate these statistical problems. The issues we considered included the analysis of multiple end points, the analysis of repeated measurements over time, subgroup analyses, trials of multiple treatments, and the overall number of significance tests in a trial report. Interpretation of large amounts of data is complicated by the common failure to specify in advance the intended size of a trial or statistical stopping rules for interim analyses. In addition, summaries or abstracts of trials tend to emphasize the more statistically significant end points. Overall, the reporting of clinical trials appears to be biased toward an exaggeration of treatment differences. Trials should have a clearer predefined policy for data analysis and reporting. In particular, a limited number of primary treatment comparisons should be specified in advance. The overuse of arbitrary significance levels (for example, P less than 0.05) is detrimental to good scientific reporting, and more emphasis should be given to the magnitude of treatment differences and to estimation methods such as confidence intervals.
    New England Journal of Medicine 09/1987; 317(7):426-32. · 54.42 Impact Factor
  • «Whendoctorsmeetnum-bers». D M Berwick, H V Fineberg, M C Weinstein . 991-998.

Full-text (2 Sources)

Download
35 Downloads
Available from
Jun 3, 2014