Una Metodología para el Modelado de Sistemas de Ingeniería Orientado a Agentes

Inteligencia artificial: Revista Iberoamericana de Inteligencia Artificial, ISSN 1137-3601, Nº. 38, 2008, pags. 39-60 01/2008;
Source: OAI

ABSTRACT En este artículo se presenta una metodología que comprende las fases de conceptualización, análisis, diseño, codificación y pruebas de sistemas de ingeniería basados en agentes, fundamentada en la metodología MultiAgent Systems for INtegrated Automation (MASINA), desarrollada para especificar sistemas multiagentes en ambientes de automatización industrial. La metodología propuesta usa el Lenguaje de Modelado Unificado (UML), ampliamente usado para modelar sistemas de software, y la Técnica de Desarrollo de Sistemas de Objetos (TDSO), la cual es una herramienta para la especificación formal de modelos orientados a objetos. Siguiendo los lineamientos metodológicos para la especificación de sistemas de ingeniería, MASINA se inicia con la fase de conceptualización que permite identificar aquellos componentes del sistema que serán considerados agentes y proponer la arquitectura del sistema multiagentes correspondiente. Estos agentes y sus interrelaciones son especificados e implementados en las fases restantes de la metodología propuesta, usando diagramas UML en la fase de análisis y diseño, y plantillas de TDSO en la fase de diseño.

Download full-text


Available from: Francisco Hidrobo, Sep 29, 2015
433 Reads
  • Source
    • "II. ASPECTOS TEÓRICOS A. MASINA La metodología MASINA ((MultiAgent Systems in Automation), es una extensión a MAS­CommonKADS [1] [2] [16] "
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Integrated Asset Management (IAM) is highly complex and requires the combined effort of several disciplines and technological tools. The orchestration of disciplines, workflow tools, and available data are paramount issues in the oil and gas industry today. Resource negotiation, communication language, and decision-making protocols are minor issues that exacerbate the problem, resulting in poor and delayed decision making. This study approaches these challenges through the implementation of innovative, distributed artificial intelligence (AI)-based architecture, designed for automated production management. This architecture, known as the Integrated Production Management Architecture (IPMA), has three layers: a connectivity layer, which allows access to the process information sources; a semantic layer, which establishes an ontological framework to guarantee the process-information integrity during the data interchange process developed between the applications that belong to the Enterprise Technology Information Platform; and a management layer, which automates the production process workflows using oilfield multi-agent systems and electronic institutions. A virtual oilfield, based on a commercial-integrated production model (IPM) and history-matched data, was used to show the benefits of the proposed approach. The IPM had the following configuration: Three reservoirs, eight oil wells, one flow station, and several gathering pipelines. The IPMA's objective was to maximize asset revenue under different constraint scenarios and changing operational events. The reactive capacity of the architecture, the effective communication between the agents, and the proposed oilfield ontology were tested successfully. In this sense, the well function of the three layers of IPMA was demonstrated. This study also outlines the use of ontologies and AI techniques that are important factors in future developments of IT solutions for the oil production industry.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a system of automatic code generation for MASINA (Multiagent Systems in Automation). MASINA is a methodology for specifying Multi-agent systems. The code generator takes MASINA models as input, and from them generates code for each one of the agents of the Multiagent System under construction. The code generation system SISGECOMA, as we call it, is composed of several agents: one that is interface with the user and captures all the information provided by him through MASINA models, another agent performs the verification and validation of the information, finally, another agent generates the Multiagents System.
    Informatica (CLEI), 2012 XXXVIII Conferencia Latinoamericana En; 01/2012