Petrochemicals from oil, natural gas, Coal and biomass: energy use, economics and innovation

Source: OAI

ABSTRACT The petrochemical industry is faced with the dual challenges of climate change and the security of energy supply. To deal with these challenges, it is necessary to identify technologies for the production of basic petrochemicals that could potentially improve energy efficiency and/or utilizing alternative primary energy sources, e.g. coal and biomass. This thesis explores the potential of novel process technologies. In total, 24 technological routes were studied and three aspects are analyzed: environment, economics and innovation. Regarding the environmental aspects, three conventional routes (i.e. utilizing naphtha and heavy feedstocks derived from crude oil and ethane derived from natural gas) are the most energy-efficient routes among all 24 routes studied. The total energy use of methane-based routes is 30% higher and that of coal and biomass-based routes is about 60-150% higher than that of the conventional routes. The total CO2 emissions of conventional and methane-based routes are similar. The total CO2 emissions of coal-based routes are by far the highest, with an exception of a coal-based route with CO2 capture and sequestration whose CO2 emissions are similar to those of the conventional routes. Biomass-based routes can avoid CO2 emissions due to biomass-based electricity cogeneration and the use of biomass-derived energy. Regarding the economic aspects, we performed an economic analysis of 24 routes using expected energy prices for the period of 2030-2050 found in the public literature. The costs of crude oil and natural gas-based routes are clearly higher than those of coal and biomass-based routes by $100-500 per ton light olefin value equivalent products. Production costs of coal and biomass-based routes are rather similar to each other. The effect of CO2 emissions costs (in the range of $0-100 per ton CO2) was tested and was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. The effect on other routes was found to be relatively small or moderate. Regarding the innovation aspects, a number of drivers and barriers to energy efficiency improvement and innovation in basic petrochemical processes were identified. For improving existing processes (conventional routes), the main drivers are energy cost savings, tight supply of gas feedstocks and personal commitment of individuals. The main barriers are staff and time shortages, competition from other prioritized projects and existing process configurations. For developing new processes (alternative routes), the main drivers are the use of low-cost feedstocks (derived from alternative primary energy sources) for producing high-value chemicals, competition among firms and the wish to broaden the application of existing knowledge. The main barriers are unfavorable economic situations, insufficient modeling tools and concerns for job security. The thesis concluded that the innovative technologies discussed in this thesis have the technical and economic potential for the petrochemical industry to deal with climate change and the security of energy supply, but there are complex drivers and barriers related to energy efficiency and technological innovations. Policies are needed to ensure alternative energy sources, such as coal or biomass, will be utilized in an environmentally sound and socially responsible way.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides a survey on studies that analyze the macroeconomic effects of intellectual property rights (IPR). The first part of this paper introduces different patent policy instruments and reviews their effects on R&D and economic growth. This part also discusses the distortionary effects and distributional consequences of IPR protection as well as empirical evidence on the effects of patent rights. Then, the second part considers the international aspects of IPR protection. In summary, this paper draws the following conclusions from the literature. Firstly, different patent policy instruments have different effects on R&D and growth. Secondly, there is empirical evidence supporting a positive relationship between IPR protection and innovation, but the evidence is stronger for developed countries than for developing countries. Thirdly, the optimal level of IPR protection should tradeoff the social benefits of enhanced innovation against the social costs of multiple distortions and income inequality. Finally, in an open economy, achieving the globally optimal level of protection requires an international coordination (rather than the harmonization) of IPR protection.
    Research Policy. 01/1990; 19(1):1-34.
  • [Show abstract] [Hide abstract]
    ABSTRACT: 421 p., fig., ref. bib. : 5 p.1/2 The history of scenario planning is rich and varied. Throughout the ages people have tried to make decisions today by studying the possibilities of tomorrow. When that tomorrow was more predictable and less fraught with uncertainty, those possibilities had a good chance of being the right ones. Now, however, the only given constant in a world of complexity is change itself. In an environment where information technology is driving an information revolution, and where the rules can be rewritten with breathtaking speed, planning can seem more based on luck than foresight. But, as this book shows, there are methods for coping with unpredictability. The scenario planning techniques described in this book will help to think about uncertainty in a structured way. Case studies including ICL, British Airways and United Distillers highlight the fact that those who feel scenario planning too 'futurist' to take seriously should take another look at its usefulness in wrestling with the pace of change.


Available from