Behavior-Based Mobile Manipulation for Drum Sampling

Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA
05/1996; DOI: 10.1109/ROBOT.1996.506521
Source: OAI

ABSTRACT This paper describes an implementation of a behavior-based mobile manipulator capable of autonomously transferring a sample from one drum to a second in unstructured environments. A major contribution of the project was the coherent integration of the arm and base as a cohesive unit, and not just a mobile base with an arm attached. The support for smooth simultaneous operation of all joints on the vehicle facilitated biologically plausible motions, such as arm preshaping. The behavior-based controller used a pseudo-force model, where behaviors add forces and torques to joints and limbs resulting in coordinated motion. The vehicle Jacobian is used to convert the pseudo-forces into joint torques and a pseudo-damping model converts the joint torques into joint velocities. This process allows rapid control of the manipulator without the use of inverse kinematics. A drum sampling task is presented where the vehicle demonstrates how a sample of material could be moved from one drum to another, illustrating the efficacy of the solution.


Full-text (3 Sources)

Available from
May 16, 2014