Gastric stem cells and gastric cancer stem cells

Anatomy & cell biology 03/2013; 46(1):8. DOI: 10.5115/acb.2013.46.1.8

ABSTRACT The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal evolution hypothesis, only cancer stem cells can initiate tumor formation, self-renew, and differentiate into various kinds of daughter cells. Because gastric cancer can originate from gastric stem cells and their self-renewal mechanism can be used by gastric cancer stem cells, we review here how critical signaling pathways, including hedgehog, Wnt, Notch, epidermal growth factor, and bone morphogenetic protein signaling, may regulate the self-renewal and differentiation of gastric stem cells and gastric cancer stem cells. In addition, the precancerous change of the gastric epithelium and the status of isolating gastric cancer stem cells from patients are reviewed.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radioresistance is a frustrating obstacle for patients with colorectal cancers (CRCs) undergoing radiotherapy. There is an urgent need to find an effective agent to increase the sensitivity of CRCs to radiation. Honokiol, an active compound purified from Magnolia, was found to radiosensitize colorectal cancer cells both in vitro and in vivo. However, the mechanisms control important signaling that enhances radiosensitivity is currently unknown. In this study, we have reviewed important signaling pathways that are closely related to radiosensitization, such as cell cycle arrest, tumor angiogenesis, JAK/STAT3 signaling pathway and Mismatch repair. Studies show that honokiol can interfere with these pathways at different levels. With overall analysis, it may bring light on finding the possible mechanism by which honokiol acts as a radiosensitizing agent for CRCs.
    Current Colorectal Cancer Reports 12/2013; 9(4). DOI:10.1007/s11888-013-0191-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is the most malignant World Health Organization grade IV brain tumor. GBM patients have a poor prognosis because of its resistance to standard therapies, such as chemotherapy and radiation. Since stem-like cells have been associated with the treatment resistance of GBM, novel therapies targeting the cancer stem cell (CSC) population is critically required. However, GBM CSCs share molecular and functional characteristics with normal neural stem cells (NSCs). To elucidate differential therapeutic targets of GBM CSCs, we compared surface markers of GBM CSCs with adult human NSCs and found that GD2 and CD90 were specifically overexpressed in GBM CSCs. We further tested whether the GBM CSC specific markers are associated with the cancer stemness using primarily cultured patient-derived GBM cells. However, results consistently indicated that GBM cells with or without GD2 and CD90 had similar in vitro sphere formation capacity, a functional characteristics of CSCs. Therefore, GD2 and CD90, GBM specific surface markers, might not be used as specific therapeutic targets for GBM CSCs, although they could have other clinical utilities.
    Anatomy & cell biology 03/2015; 48(1):44-53. DOI:10.5115/acb.2015.48.1.44
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate expression of stem cell marker Musashi-1 (Msi-1) in relationship to tumorigenesis and progression of intestinal-type gastric cancer (GC). Endoscopic biopsy specimens and surgical specimens were obtained, including 54 cases of intestinal-type GC, 41 high-grade intraepithelial neoplasia, 57 low-grade intraepithelial neoplasia, 31 intestinal metaplasia, and 36 normal gastric mucosa. Specimens were fixed in 10% paraformaldehyde, conventionally dehydrated, embedded in paraffin, and sliced in 4-μm-thick serial sections. Two-step immunohistochemical staining was used to detect Msi-1 and proliferating cell nuclear antigen (PCNA) expression. Correlation analysis was conducted between Msi-1 and PCNA expression. The relationship between Msi-1 expression and clinicopathological parameters of GC was analyzed statistically. There were significant differences in Msi-1 and PCNA expression in different pathological tissues (χ(2) = 15.37, P < 0.01; χ(2) = 115.36, P < 0.01). Msi-1 and PCNA-positive cells were restricted to the isthmus of normal gastric glands. Expression levels of Msi-1 and PCNA in intestinal metaplasia were significantly higher than in normal mucosa (U = 392.0, P < 0.05; U = 40.50, P < 0.01), whereas there was no significant difference compared to low or high-grade intraepithelial neoplasia. Msi-1 and PCNA expression in intestinal-type GC was higher than in high-grade intraepithelial neoplasia (U = 798.0, P < 0.05; U = 688.0, P < 0.01). There was a significantly positive correlation between Msi-1 and PCNA expression (rs = 0.20, P < 0.01). Msi-1 expression in GC tissues was correlated with their lymph node metastasis and tumor node metastasis stage (χ(2) = 12.62, P < 0.01; χ(2) = 11.24, P < 0.05), but not with depth of invasion and the presence of distant metastasis. Msi-1-positive cells may play a key role in the early events of gastric carcinogenesis and may be involved in invasion and metastasis of GC.
    World Journal of Gastroenterology 10/2013; 19(39):6637-44. DOI:10.3748/wjg.v19.i39.6637 · 2.43 Impact Factor

Preview (2 Sources)

1 Download