Article

Targeting MicroRNA-208a to Suppress Adverse Postmyocardial Infarction Remodelling Related to RNA Activation of Endoglin Gene Expression

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... This micro RNA supresses PINK 1 translation and induces mitochondrial fragmentation, myocardial infarction and apoptosis [184,185]. Mtfr 1 (mitochondrial fission regulator 1) contributes in abnormal mitochondrial function by targeting NFAT/-324-5p/ [228]. Over expression of this noncoding RNA reduced apoptosis in ischemia reperfusion model and also reduces infract size in mouse injury model. ...
... It shows that miR-208a enhanced the expression of endoglin during acute MI. In addition, the anti-miR-208a strategy to down regulate the expression of endoglin protein can be used as a therapeutic strategy [228]. The circulatory miR-208b was also quantified in Greek patients of AMI which support the use of this miRNA as a therapeutic marker in AMI. ...
Chapter
Full-text available
Cardiovascular Diseases (CVDs) as a leading cause of death worldwide inflict major stress on morbidity and societal costs. Though the studies pertaining to pathophysiology and genetics of CVDs have helped in prevention, diagnosis and treatment of diseases, there are still lacunas in our knowledge. So, novel tools that can define genomic regulation under different conditions are needed to bridge this gap. ‘Epigenetic’ mechanism helps the cells to quickly respond to ever changing environment by molecular mechanisms like methylation, histone modifications, nc-RNAs. These mechanisms act as a new layer of regulation in CVDs. The role of epigenetics as a key regulatory player in prevention, diagnosis and treatment of CVDs is emerging. Thus, the focus of present chapter is to decipher the role of epigenetics in CVDs and its potential to be used in risk assessment or as biomarkers in devising and deploying better diagnosis and treatment for different CVDs.
... [28][29][30] Only serum biomarkers directly linked to vascular function either alone or in association with preeclampsia were considered, including markers of angiogenesis (sFlt-1, VEGF, PIGF, and soluble endoglin), inflammation (soluble intercellular adhesion molecule-1 [sICAM-1] and soluble vascular cellular adhesion molecule-1 [sVCAM-1]), and thrombosis (endothelin, and fibronectin). 9,31,32 We also included novel, yet promising, biomarkers (miRNA) 33 and growth arrestspecific protein 6. 34 ...
Article
Women with prior hypertensive disorders of pregnancy (HDP) are at twice the risk of cardiovascular disease compared with women with prior normotensive pregnancy, possibly because of sustained vascular dysfunction after delivery. The aim of this systematic review and meta-analysis is to summarize evidence of vascular dysfunction at least 3 months after HDP. Articles in all languages were retrieved from principal databases. Studies included were observational, with HDP as the main exposure and measurements of vascular dysfunction via imaging modalities or serum biomarkers as the main outcome, assessed at least 3 months postpartum. We pooled results of modalities reported in >3 studies using a random effects model. Of 6109 potentially relevant studies, 72 were included that evaluated 10 imaging modalities and 11 serum biomarkers in 8702 women. There was evidence of vascular dysfunction in women post HDP compared with women with prior normal pregnancy when measured by carotid-femoral pulse wave velocity (0.64 m/s [0.17-1.11]), carotid intima-media thickness (0.025 mm [0.004-0.045]), and augmentation index (5.48% [1.58-9.37]), as well as mean levels of soluble fms-like tyrosine kinase (6.12 pg/mL [1.91-10.33]). Between-groups differences in measures of vascular dysfunction were more pronounced when assessments were performed in younger women (<40 years) or closer to the index pregnancy for almost all modalities. In conclusion, pooled data from studies evaluating vascular imaging suggest that some vascular dysfunction persists after HDP as compared with women with prior normal pregnancy.
Article
Cardiovascular diseases (CVDs) and cancer, which are the leading causes of mortality globally, have been viewed as two distinct diseases. However, the fact that cancer and CVDs may coincide has been noted by cardiologists when taking care of patients with CVDs caused by cancer chemotherapy; this entity is designated cardio-oncology. More recently, patients with CVDs have also been found to have increased risk of cancers, termed reverse cardio-oncology. Although reverse cardio-oncology has been highlighted as an important disease state in recent studies, how the diseased heart affects cancer and the potential mediators of the crosstalk between CVDs and cancer are largely unknown. Here, we focus on the roles of cardiac-specific microRNA-208a (miR-208a) in cardiac and cancer biology and explore its essential roles in reverse cardio-oncology. Accumulating evidence has shown that within the heart, increased miR-208a promotes myocardial injury, arrhythmia, cardiac remodeling, and dysfunction and that secreted miR-208a in the circulation may have novel roles in promoting tumor proliferation and invasion. This review, therefore, provides insights into the novel roles of miR-208a in reverse cardio-oncology and strategies to prevent secondary carcinogenesis in patients with early- or late-stage heart failure.
Chapter
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Article
Background Long noncoding RNAs (lncRNAs) are emerging as important mediators of cardiac pathophysiology. The aim of the present study is to investigate the effects of lncR-30245, an lncRNA, on cardiac fibrogenesis and the underlying mechanism. Methods Myocardial infarction (MI) and transforming growth factor (TGF)-β1 were used to induce fibrotic phenotypes. Cardiac fibrosis was detected by Masson’s trichrome staining. Cardiac function was evaluated by echocardiography. Western blot, quantitative reverse transcription-polymerase chain reaction, and pharmacological approaches were used to investigate the role of lncR-30245 in cardiac fibrogenesis. Results Expression of lncR-30245 was significantly increased in MI hearts and TGF-β1–treated cardiac fibroblasts (CFs). LncR-30245 was mainly located in the cytoplasm. Overexpression of lncR-30245 promoted collagen production and CF proliferation. Knockdown of lncR-30245 significantly inhibited TGF-β1–induced collagen production and CF proliferation. LncR-30245 overexpression inhibited the antifibrotic role of peroxisome proliferator-activated receptor (PPAR)-γ and increased connective tissue growth factor (CTGF) expression, whereas lncR-30245 knockdown exerted the opposite effects. Rosiglitazone, a PPAR-γ agonist, significantly inhibited lncR-30245–induced CTGF upregulation and collagen production in CFs. In contrast, T0070907, a PPAR-γ antagonist, attenuated the inhibitory effects of lncR-30245 small interfering RNA (siRNA) on TGF-β1–induced CTGF expression and collagen production. LncR-30245 knockdown significantly enhanced ejection fraction and fractional shortening and attenuated cardiac fibrosis in MI mice. Conclusion Our study indicates that the lncR-30245/PPAR-γ/CTGF pathway mediates MI-induced cardiac fibrosis and might be a therapeutic target for various cardiac diseases associated with fibrosis.
Article
Background Long noncoding RNAs (lncRNAs) are emerging as important mediators of cardiac pathophysiology. The aim of the present study is to investigate the effects of an lncRNA lncR-30245 on cardiac fibrogenesis and the underlying mechanism. Methods Myocardial infarction (MI) and transforming growth factor beta1 (TGF-β1) were used to induce fibrotic phenotypes. Cardiac fibrosis was detected by Masson’s trichrome staining. Cardiac function was evaluated by echocardiography. Western blot, quantitative RT-PCR, and pharmacological approaches were employed to investigate the role of lncR-30245 in cardiac fibrogenesis. Results Expression of lncR-30245 was significantly increased in MI hearts and TGF-β1-treated cardiac fibroblasts (CFs). LncR-30245 was mainly located in the cytoplasm. Overexpression of lncR-30245 promoted collagen production and CFs proliferation. Knockdown of lncR-30245 significantly inhibited TGF-β1-induced collagen production and CFs proliferation. LncR-30245 overexpression inhibited the anti-fibrotic role of peroxisome proliferator-activated receptor gamma (PPAR-γ) and increased connective tissue growth factor (CTGF) expression, while lncR-30245 knockdown exerted the opposite effects. Rosiglitazone, a PPAR-γ agonist, significantly inhibited lncR-30245-induced CTGF upregulation and collagen production in CFs. In contrast, T0070907, a PPAR-γ antagonist, attenuated the inhibitory effects of lncR-30245 siRNA on TGF-β1-induced CTGF expression and collagen production. Importantly, lncR-30245 knockdown significantly enhanced ejection fraction and fractional shortening and attenuated cardiac fibrosis in MI mice. Conclusion Our study indicates that the lncR-30245/PPAR-γ/CTGF pathway mediates MI-induced cardiac fibrosis and might be a therapeutic target for various cardiac diseases associated with fibrosis.
Article
Full-text available
Heart failure (HF) causes left-atrial (LA) and left-ventricular (LV) remodeling, with particularly-prominent changes in LA that create a substrate for atrial fibrillation (AF). MicroRNAs (miRs) are potential regulators in cardiac remodeling. This study evaluated time-dependent miR expression-changes in LA and LV tissue, fibroblasts and cardiomyocytes in experimental HF. HF was induced in dogs by ventricular tachypacing (varying periods, up to 2 weeks). Following screening-microarray, 15 miRs were selected for detailed real-time qPCR assay. Extracellular matrix mRNA-expression was assessed by qPCR. Tachypacing time-dependently reduced LV ejection-fraction, increased LV-volume and AF-duration, and caused tissue-fibrosis with LA changes greater than LV. Tissue miR-expression significantly changed in LA for 10 miRs; in LV for none. Cell-selective analysis showed significant time-dependent changes in LA-fibroblasts for 10/15 miRs, LV-fibroblasts 8/15, LA-cardiomyocytes in 6/15 and LV-cardiomyocytes 3/15. Cell-expression specificity did not predict cell-specificity of VTP-induced expression-changes, e.g. 4/6 cardiomyocyte-selective miRs changed almost exclusively in fibroblasts (miR-1, miR-208b, miR133a/b). Thirteen miRs directly implicated in fibrosis/extracellular-matrix regulation were prominently changed: 9/13 showed fibroblast-selective alterations and 5/13 LA-selective. Multiple miRs changed in relation to associated extracellular-matrix targets. Experimental HF causes tissue and cell-type selective, time-dependent changes in cardiac miR-expression. Expression-changes are greater in LA versus LV, and greater in fibroblasts than cardiomyocytes, even for most cardiomyocyte-enriched miRs. This study, the first to examine time, chamber and cell-type selective changes in an experimental model of HF, suggests that multiple miR-changes underlie the atrial-selective fibrotic response and emphasize the importance of considering cell-specificity of miR expression-changes in cardiac remodeling paradigms.
Article
Full-text available
MicroRNAs (miRNAs) are a class of regulatory small RNAs that have fundamentally transformed our understanding of how gene networks are regulated representing one of the most exciting areas of the modern cardiology research. Among all known miRNAs, miR-208a is one of the most important heart-enriched miRNA playing a crucial role in the heart health and disease. miR-208a is a member of a miRNA family that also included miR-208b and is encoded by an intronic region of the Myh6 gene. Within the heart, miR-208a and miR-208b are involved in the regulation of the myosin heavy chain isoformswitch during development and in pathophysiological conditions. miR-208a is sufficient to induce arrhythmias, cardiac remodeling, and to regulate the expression of hypertrophy pathway components and the cardiac conduction system. Recently, the identification of miR-208a in the bloodstream has led to a great clinical interest to use this molecule as a potential noninvasive biomarker of myocardial injuries.
Article
Full-text available
Endoglin (CD105) is an integral membrane glycoprotein that serves as a coreceptor for members of the transforming growth factor-β superfamily of proteins. A major role for endoglin in regulating transforming growth factor-β-dependent vascular remodeling and angiogenesis has been postulated based on the following: 1) endoglin is the gene mutated in hereditary hemorrhagic telangiectasia type 1, a disease characterized by vascular malformations; 2) endoglin knockout mice die at midgestation because of defective angiogenesis; 3) endoglin is overexpressed in neoangiogenic vessels, during inflammation, and in solid tumors; and 4) endoglin regulates the expression and activity of endothelial nitric oxide synthase, which is involved in angiogenesis and vascular tone. Besides the predominant form of the endoglin receptor (long endoglin isoform), two additional forms of endoglin have been recently reported to play a role in the vascular pathology and homeostasis: the alternatively spliced short endoglin isoform and a soluble endoglin form that is proteolytically cleaved from membrane-bound endoglin. The purpose of this review is to underline the role that the different forms of endoglin play in regulating angiogenesis, vascular remodeling, and vascular tone, as well as to analyze the molecular and cellular mechanisms supporting these effects.
Article
Full-text available
microRNA (miRNA) is reported to be present in the blood of humans and has been increasingly suggested as a biomarker for diseases. We aim to determine the potential of cardiac-specific miRNAs in circulation to serve as biomarkers for acute myocardial infarction (AMI). By verifying their tissue expression patterns with real-time polymerase chain reaction (PCR) analysis, muscle-enriched miRNAs (miR-1, miR-133a, and miR-499) and cardiac-specific miR-208a were selected as candidates for this study. With miRNA microarray and real-time PCR analyses, miR-1, miR-133a, and miR-499 were present with very low abundance, and miR-208a was absent in the plasma from healthy people. In the AMI rats, the plasma levels of these miRNAs were significantly increased. Especially, miR-208a in plasma was undetected at 0 h, but was significantly increased to a detectable level as early as 1 h after coronary artery occlusion. Further evaluation of the miRNA levels in plasma from AMI patients (n = 33) demonstrated that all four miRNA levels were substantially higher than those from healthy people (n = 30, P < 0.01), patients with non-AMI coronary heart disease (n = 16, P < 0.01), or patients with other cardiovascular diseases (n = 17, P < 0.01). Notably, miR-208a remained undetectable in non-AMI patients, but was easily detected in 90.9% AMI patients and in 100% AMI patients within 4 h of the onset of symptoms. By receiver operating characteristic curve analysis, among the four miRNAs investigated, miR-208a revealed the higher sensitivity and specificity for diagnosing AMI. Elevated cardiac-specific miR-208a in plasma may be a novel biomarker for early detection of myocardial injury in humans.
Article
MicroRNAs (miRs) play a role in cardiac remodelling, and acute myocardial infarction (AMI) can regulate miR expression. MiR-208a is essential for the expression of the genes involved in cardiac hypertrophy and fibrosis. MiR-208a activates endoglin expression and may result in cardiac fibrosis. The role of miR-208a and endoglin in AMI is not known. We sought to investigate the regulation of miR-208a and endoglin in AMI. Ligation of the proximal left anterior descending artery was performed in adult Sprague-Dawley rats to induce AMI. Echocardiography was used to measure heart size and left ventricular function. The TaqMan miR real-time quantitative assay was used to quantitate miR-208a. Myocardial fibrosis was detected by Masson trichrome staining. AMI and overexpression of miR-208a in the sham group without infarction significantly increased myocardial miR-208a, endoglin, and β-myosin heavy chain (β-MHC) expression. Overexpression of antagomir-208a significantly inhibited the increase of myocardial endoglin and β-MHC protein expression induced by infarction. Overexpression of mutant miR-208a in the sham group did not induce myocardial endoglin and β-MHC expression. Pretreatment with atorvastatin and the angiotensin-receptor antagonist valsartan significantly attenuated the increase of endoglin and β-MHC induced by infarction. AMI and overexpression of miR-208a in the sham group significantly increased the area of myocardial fibrosis compared with the sham group. Overexpression of antagomir-208a and pretreatment with atorvastatin and valsartan in the AMI group significantly decreased the area of myocardial fibrosis induced by infarction. MiR-208a increases endoglin expression to induce myocardial fibrosis in rats with AMI. Treatment with atorvastatin and valsartan can decrease myocardial fibrosis induced by AMI through attenuating miR-208a and endoglin expression. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Article
MicroRNAs (miRNAs) are small noncoding RNAs that block translation or induce degradation of mRNA and thereby control patterns of gene expression. Acute myocardial infarction is a common cardiovascular event that results in cardiac remodelling and can consequently lead to the development of chronic heart failure. Several miRNAs have been shown to control important processes that contribute to the pathophysiological consequences of acute myocardial infarction. miRNAs can either promote or inhibit cardiomyocyte cell death, and also regulate postischaemic neovascularization. Cardiac regeneration can also be regulated by miRNAs that control cardiomyocyte proliferation or interfere with cardioprotective effects mediated by stem or progenitor cells. miRNAs can also be used for direct reprogramming of cardiac fibroblasts into cardiomyocytes. In this Review, we focus on the current understanding of the role of miRNAs in these processes, and particularly discuss the therapeutic potential of miRNAs in treating acute myocardial infarction.
Article
Atrial fibrillation (AF), the most common sustained arrhythmia in clinical practice, is an important contributor to cardiac morbidity and mortality. Pharmacological approaches currently available to treat patients with AF lack sufficient efficacy and are associated with potential adverse effects. Even though ablation is generally more effective than pharmacotherapy, this invasive procedure has considerable potential complications and is limited by long-term recurrences. Novel therapies based on the underlying molecular mechanisms of AF can provide useful alternatives to current treatments. MicroRNAs (miRNAs), endogenous short RNA sequences that regulate gene expression, have been implicated in the control of AF, providing novel insights into the molecular basis of the pathogenesis of AF and suggesting miRNA targeting as a potential approach for the management of this common arrhythmia. In this Review, we provide a comprehensive analysis of the current experimental evidence supporting miRNAs as important factors in AF and discuss their therapeutic implications. We first provide background information on the pathophysiology of AF and the biological determinants of miRNA synthesis and action, followed by experimental evidence for miRNA-mediated regulation of AF, and finally provide a comprehensive overview of miRNAs as potential novel therapeutic targets for AF.
Article
Over the last few years, the field of microRNA (miRNA) in cardiovascular biology and disease has expanded at an incredible pace. miRNAs are themselves part of a larger family, that of non-coding RNAs, the importance of which for biological processes is starting to emerge. miRNAs are ∼22-nucleotide-long RNA sequences that can legate messenger (m)RNAs at partially complementary binding sites, and hence regulate the rate of protein synthesis by altering the stability of the targeted mRNAs. In the cardiovascular system, miRNAs have been shown to be critical regulators of development and physiology. They control basic functions in virtually all cell types relevant to the cardiovascular system (such as endothelial cells, cardiac muscle, smooth muscle, inflammatory cells, and fibroblasts) and, thus, are directly involved in the pathophysiology of many cardiovascular diseases. As a result of their role in disease, they are being studied for exploitation in diagnostics, prognostics, and therapeutics. However, there are still significant obstacles that need to be overcome before they enter the clinical arena. We present here a review of the literature and outline the directions toward their use in the clinic.
Article
With 550 000 new cases diagnosed annually and $37 billion spent per year,1 heart failure (HF) with reduced ejection fraction is one of the largest contributors to disease burden and healthcare expenditure in the United States. Despite significant progress in the treatment of HF2,3 with medications, the prognosis of HF remains dismal, with a mortality rate of 42% at 5 years after diagnosis. Therefore, understanding the underlying molecular pathways in the transition from established cardiovascular disease to HF may spur the development of novel biomarkers and therapeutic targets. The heart responds to stressors such as hypoxia (in myocardial infarction [MI]), increased wall stress (in valvular heart disease), and neurohormonal/metabolic stress (in diabetes mellitus and hypertension) by cardiomyocyte hypertrophy and fibrosis. Although initially compensatory for increased wall stress or myocyte loss, the molecular pathways that underlie pathological hypertrophy are ultimately maladaptive, recapitulating further hypertrophy, contractile dysfunction, apoptosis, and fibrosis. The progression to HF is associated with a characteristic cascade of altered intracellular signaling and gene expression, representing a final common pathway to ultimate decompensation. The various signaling pathways that underlie pathological hypertrophy and the progression to HF have been the subject of intense investigation and are summarized in multiple review publications.4–9. More recently, considerable attention has been paid to microRNAs (miRNAs), a novel biological control mechanism with the ability to regulate entire molecular networks by complex feedback and feed-forward mechanisms. Several reviews have summarized recent findings implicating miRNAs in cardiac development and disease.10,11 In the past few years, the discovery of circulating miRNAs has led to their investigation as biomarkers and mediators of cell–cell communication. This review focuses on recent developments detailing the role of miRNAs in the pathogenesis of HF, their potential role as biomarkers, and their use as …
Article
Aims: MicroRNAs (miRNAs) play a role in cardiac remodelling. MiR208a is essential for the expression of the genes involved in cardiac hypertrophy and fibrosis. The mechanism of regulation of miR208a involved in cardiac hypertrophy by mechanical stress is still unclear. We sought to investigate the mechanism of regulation of miR208a and the target gene of miR208a in cardiac cells by mechanical stretch.Methods and resultsRat H9c2 cells (cardiac myoblasts) grown on a flexible membrane base were stretched via vacuum to 20% of maximum elongation at 60 cycles/min. Mechanical stretch significantly enhanced miR208a expression after 4 h of stretch. Exogenous addition of transforming growth factor-β1 (TGF-β1) increased miR208a expression, and pre-treatment with TGF-β1 antibody attenuated the miR208a expression induced by stretch. Mechanical stretch significantly increased endoglin and collagen I expression for 6-24 h. Exogenous addition of TGF-β1 and overexpression of miR208a up-regulated endoglin and collagen I expression, while antagomir208a and Smad3/4 inhibitor attenuated endoglin and collagen I expression induced by stretch. Mechanical stretch and TGF-β1 increased Smad3/4-DNA binding activity and miR208a promoter activity, and TGF-β1 antibody and Smad3/4 inhibitor decreased the Smad3/4-DNA binding activity and miR208a promoter activity induced by stretch.Conclusion Cyclic mechanical stretch enhances miR208a expression in cultured rat cardiac myoblasts. The stretch-induced miR208a is mediated by TGF-β1. Mir208a activates endoglin expression and may result in cardiac fibrosis.
Article
Heart failure is a major cause of morbidity and mortality worldwide. The ubiquitously expressed cytokine transforming growth factor-β1 (TGFβ1) promotes cardiac fibrosis, an important component of progressive heart failure. Membrane-associated endoglin is a coreceptor for TGFβ1 signaling and has been studied in vascular remodeling and preeclampsia. We hypothesized that reduced endoglin expression may limit cardiac fibrosis in heart failure. We first report that endoglin expression is increased in the left ventricle of human subjects with heart failure and determined that endoglin is required for TGFβ1 signaling in human cardiac fibroblasts using neutralizing antibodies and an siRNA approach. We further identified that reduced endoglin expression attenuates cardiac fibrosis, preserves left ventricular function, and improves survival in a mouse model of pressure-overload-induced heart failure. Prior studies have shown that the extracellular domain of endoglin can be cleaved and released into the circulation as soluble endoglin, which disrupts TGFβ1 signaling in endothelium. We now demonstrate that soluble endoglin limits TGFβ1 signaling and type I collagen synthesis in cardiac fibroblasts and further show that soluble endoglin treatment attenuates cardiac fibrosis in an in vivo model of heart failure. Our results identify endoglin as a critical component of TGFβ1 signaling in the cardiac fibroblast and show that targeting endoglin attenuates cardiac fibrosis, thereby providing a potentially novel therapeutic approach for individuals with heart failure.
Article
Small RNA molecules, such as microRNA and small interfering RNA, have emerged as master regulators of gene expression through their ability to suppress target genes in a phenomenon collectively called RNA interference (RNAi). There is growing evidence that small RNAs can also serve as activators of gene expression by targeting gene regulatory sequences. This novel mechanism, known as RNA activation (RNAa), appears to be conserved in at least mammalian cells and triggered by both endogenous and artificially designed small RNAs. RNAa depends on Argonaute proteins, but possesses kinetics distinct from that of RNAi. Epigenetic changes are associated with RNAa and may contribute to transcriptional activation of target genes, but the underlying mechanism remains elusive. Given the potential of RNAa as a molecular tool for studying gene function and as a therapeutic for disease, further research is needed to completely elucidate its molecular mechanism in order to refine the rules for target selection and improve strategies for exploiting it therapeutically. WIREs RNA 2011 2 748–760 DOI: 10.1002/wrna.90 For further resources related to this article, please visit the WIREs website
Article
Angiotensin II (Ang II) is a powerful mediator of adverse cardiac remodeling and fibrosis. However, the mechanisms of Ang II-induced myocardial fibrosis remain to be clarified. We postulated that Ang II alters transforming growth factor beta (TGF-beta) receptor expression, specifically that of endoglin, and thereby modulates cardiac fibroblast (CF) collagen metabolism. Experiments were conducted using CF from adult Sprague Dawley rats to determine the expression of TGF-beta1 receptors including endoglin, and the role of Ang II type 1 (AT1) and type 2 (AT2) receptors, and MAPK p42/44 in this process. The functional role of endoglin in modulating Ang II effects on matrix metalloproteinase-1 (MMP-1) and type I collagen expression was also analyzed. Endoglin gene and protein expression were consistently identified in quiescent CFs. Ang II increased the expression of endoglin mRNA and protein in a concentration and time-dependent manner, with no effect on TGF-beta receptors I and II expression. This effect was AT1 receptor mediated, because AT1 receptor antagonists valsartan, candesartan, and losartan inhibited Ang II-induced endoglin expression, whereas the AT2 receptor antagonist PD123319 had no effect. MAPKp42/44 inhibition attenuated Ang II-induced endoglin expression. Ang II-induced decrease in MMP-1 protein expression and increase in type I collagen protein expression were both blocked by a specific endoglin antibody. Hence, our results indicate that endoglin is upregulated in CFs by Ang II via the AT1 receptor and modulates profibrotic effects of Ang II. These findings provide novel insights into Ang II-induced cardiac remodeling.
Article
MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of alpha-cardiac muscle myosin heavy chain gene (Myh6), was actually a member of a miRNA family that also included miR-208b, which was determined to be encoded within an intron of beta-cardiac muscle myosin heavy chain gene (Myh7). These miRNAs were differentially expressed in the mouse heart, paralleling the expression of their host genes. Transgenic overexpression of miR-208a in the heart was sufficient to induce hypertrophic growth in mice, which resulted in pronounced repression of the miR-208 regulatory targets thyroid hormone-associated protein 1 and myostatin, 2 negative regulators of muscle growth and hypertrophy. Studies of the miR-208a Tg mice indicated that miR-208a expression was sufficient to induce arrhythmias. Furthermore, analysis of mice lacking miR-208a indicated that miR-208a was required for proper cardiac conduction and expression of the cardiac transcription factors homeodomain-only protein and GATA4 and the gap junction protein connexin 40. Together, our studies uncover what we believe are novel miRNA-dependent mechanisms that modulate cardiac hypertrophy and electrical conduction.
Article
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the extracellular matrix accumulation observed in fibrotic diseases. Endoglin is an important component of the TGF-beta receptor complex highly expressed in tissues undergoing fibrotic processes. Endoglin expression regulates the effect of TGF-beta on extracellular matrix synthesis. The purpose of our study has been to understand the molecular mechanism by which endoglin exerts its effects on fibrosis and the possible role of MAP kinases in these effects. We have assessed in mock and in endoglin-transfected L6E9 myoblasts the effect of TGF-beta1 on collagen mRNA by Northern blot and effect of TGF-beta1 on collagen content in the cultured medium by [(3)H]-Proline incorporation into collagen proteins. Total and activated MAPK and their role on collagen synthesis were assessed by Western blot. TGF-beta1 induced an increase on alpha(2) (I) collagen mRNA expression and collagen accumulation in mock-transfected myoblasts, whereas the response was much lower in endoglintransfected cells. TGF-beta1 activated the ERK1/2 and p38 MAPK pathways but not the JNK pathway in L6E9 myoblasts. TGF-beta1-induced alpha(2) (I) collagen mRNA expression and collagen accumulation were completely inhibited by SB203580, in either mock or endoglintransfected myoblasts. PD98059 increased TGF-beta1 induced-collagen synthesis and accumulation in endoglin-transfected myoblasts but not in mock cells. Our studies demonstrate that TGF-beta1- induced collagen synthesis is mediated by p38 MAPK activation in L6E9 myoblasts. Furthermore, endoglin expression reduces basal and TGF-beta1 induced collagen synthesis when ERK1/2 pathway is operating.