• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence that the cannabinoid type 1 receptor (CB1) and its endogenous ligands, endocannabinoids, involved in regulation of feeding behavior and body weight. Over-activation of ECS is associated with metabolic diseases as dyslipidemia and insulin resistance involved in CAD and diabetes. The aim was to determine whether G1359A polymorphism of CNR1 associated with CAD with and without T2DM, and with T2DM patients free of CAD and elucidate the association of CNR1 polymorphism with CAD risk factors. The study was carried on 50 patients with CAD (25 patients with and 25 patients without T2DM), 25 patients with T2DM free of CAD and a group of 20 healthy subjects as a control group. Coronary artery angiography for patient group, serum lipid profile (TG, TC, LDL and HDL) and assessment of G1359A polymorphism of CNR1 by RFLP method were done. CAD patients with and without T2DM had significantly higher age, fasting blood glucose, systolic and diastolic blood pressure, male gender, smoking, and body mass index (BMI) compared with control. GG genotype and G allele of G1359A polymorphism were significantly associated with CAD patients with T2DM (p<0.05). G allele increased risk of occurrence of CAD with diabetes by 5.22 (OR) 95% CI (1.32-20.54). GG genotype was significantly associated with higher TC (p<0.01), LDLc (p<0.001) and BMI (p=0.001). Association of G1359A polymorphism with BMI and disordered lipid may explain in part its association with CAD patients with T2DM and may encourage use of cannabinoid receptor antagonist in treatment of these disorders. Copyright © 2013 Safaa I. Tayel, et al., This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    International Journal of Current Research. 11/2013; 5(11):3447-3452.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, abnormal regulation of the endocannabinoid system (ECS) has been proposed as a key factor in the development of obesity-related metabolic disorders such as diabetes. Indeed, this signaling system which includes the cannabinoid type 1 and 2 receptors (CB1R and CB2R) and their endogenous lipid ligands, has been shown to influence feeding behavior, energy expenditure, as well as glucose and lipid metabolism. Importantly, blocking CB1R function has been demonstrated to counteract metabolic aberrations associated with obesity in various murine models and in humans. Here we provide an update on recent findings describing the role of the ECS in energy balance and metabolism, and explore how recent experimental and clinical studies have delivered new insights into the therapeutic potential of this physiological system as a means of treating obesity-induced metabolic disorders. WIREs Membr Transp Signal 2013, 2:49–63. doi: 10.1002/wmts.79 For further resources related to this article, please visit the WIREs website.
    Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 03/2013; 2(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soon after the discovery of cannabis by western societies, its psychotropic effects overshadowed its medical benefits. However, investigation into the molecular action of the main constituents of cannabis has led to the discovery of an intercellular signalling system, called the endocannabinoid system (ECS). The ECS comprises a set of molecular components, including enzymes, signalling lipids and G-protein coupled receptors, which has an outstanding role in modulating eating behaviour and energy homeostasis. Interestingly, evidence has shown that the ECS is present at the central and peripheral nervous system, modulating the function of the hypothalamus, the brain reward system and the brainstem, and coordinating the crosstalk between these brain structures and peripheral organs. Indeed, the ECS is present and functional in metabolically relevant peripheral tissues, directly modulating their physiology. In the context of a global obesity pandemic, these discoveries are highly suggestive in order to design novel pharmaceutical tools to fight obesity and related morbidities. In fact, a cannabinoid-based first generation of drugs was developed and marketed. Their failure, due to central side-effects, is leading to a second generation of these drugs unable to cross the blood-brain barrier, as well as other ECS-focused strategies that are still in the pipeline. In the next few years we will hopefully know whether such an important player in energy homeostasis can be successfully targeted without significantly affecting other vital processes related to mood and sense of well-being. Copyright © 2013 John Wiley & Sons, Ltd.
    Drug Testing and Analysis 12/2013; · 3.17 Impact Factor