Article

Detector description and performance for the first coincidence observations between LIGO and GEO

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v.517, 154-179 (2004) DOI: 10.1016/j.nima.2003.11.124
Source: OAI

ABSTRACT For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compact binary coalescences, such as binary neutron stars or black holes, are among the most promising candidate sources for the current and future terrestrial gravitational-wave detectors. While such sources are best searched using matched template techniques and chirp template banks, integrating chirp signals from binaries over the entire Universe also leads to a gravitational-wave background (GWB). In this paper we systematically scan the parameter space for the binary coalescence GWB models, taking into account uncertainties in the star formation rate and in the delay time between the formation and coalescence of the binary, and we compare the computed GWB to the sensitivities of the second and third generation gravitational-wave detector networks. We find that second generation detectors are likely to detect the binary coalescence GWB, while the third generation detectors will probe most of the available parameter space. The binary coalescence GWB will, in fact, be a foreground for the third-generation detectors, potentially masking the GWB background due to cosmological sources. Accessing the cosmological GWB with third generation detectors will therefore require identification and subtraction of all inspiral signals from all binaries in the detectors' frequency band.
    Physical review D: Particles and fields 12/2011; 85(10).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper.
    Journal of Instrumentation 03/2012; 7(03):P03012. · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.
    Journal of Instrumentation 08/2013; 8(09). · 1.66 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Jun 1, 2014