Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Reverses Mesenchymal to Epithelial Phenotype and Inhibits Metastasis in Inflammatory Breast Cancer

Breast Cancer Translational Research Laboratory, Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Clinical Cancer Research (Impact Factor: 8.72). 10/2009; 15(21):6639-48. DOI: 10.1158/1078-0432.CCR-09-0951
Source: PubMed


Inflammatory breast cancer (IBC) is a rare but aggressive type of advanced breast cancer. Epidermal growth factor receptor (EGFR) expression is an independent poor prognostic factor in IBC. The purpose of this study was to determine the effect on IBC tumorigenicity and metastasis of blocking the EGFR pathway.
IBC cell lines, which express high level of EGFR, were treated with EGFR small interfering RNA and with the EGFR tyrosine kinase inhibitor erlotinib. The role of EGFR in IBC cell proliferation, motility, invasiveness, and change of the expression levels of epithelial-mesenchymal transition markers was examined. The role of extracellular signal-regulated kinase (ERK)-1/2 in erlotinib activity was also studied. The activity of erlotinib in tumor growth and metastasis was examined in an orthotopic xenograft model of IBC.
Erlotinib inhibited proliferation and anchorage-independent growth of IBC cells, and this inhibition was ERK dependent. Erlotinib inhibited cell motility and invasiveness and reversed the mesenchymal phenotype of IBC cells to epithelial phenotype in three-dimensional culture. Erlotinib dramatically inhibited IBC tumor growth in a xenograft model. Interestingly, erlotinib inhibited spontaneous lung metastasis, even at a low dose that had no significant effect on primary tumor growth. These erlotinib-treated tumors were converted to epithelial phenotype from mesenchymal phenotype.
The EGFR pathway is involved in tumor growth and metastasis of IBC. Targeting EGFR through the ERK pathway may represent an effective therapeutic approach to suppress tumorigenicity and prevent metastasis in EGFR-expressing IBC.

Download full-text


Available from: Naoto T Ueno, Sep 30, 2015
16 Reads
  • Source
    • "Therefore, it was suggested that Erlotinib functions through inhibition of epithelialmesenchymal transition (EMT) (Zhang D. et al, 2009). "
    01/2015; 2(3). DOI:10.17160/josha.2.3.36
  • Source
    • "In addition, to focus on the roots of resistance, we chose not to rely on cell proliferation assays. We tested the EGFR inhibitor erlotinib and the MEK inhibitor AZD6244; both targets, EGFR and MEK, are commonly active in TNBC and particularly in the SUM149 cell line [30]. We found that MA cells were more resistant to both of these inhibitors than the parental cell line was. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance.
    PLoS ONE 10/2014; 9(10):e109487. DOI:10.1371/journal.pone.0109487 · 3.23 Impact Factor
  • Source
    • "EGFR family and its downstream signaling pathways are known to promote cell migration, angiogenesis, invasion, and metastasis [22]. Previous studies have shown that the EGFR inhibitor erlotinib (Tarceva™) significantly inhibited cell motility, invasiveness, tumor growth, and spontaneous lung metastasis in EGFR-expressing IBC models [31]. Further therapeutic studies are warranted to examine the effects of AZD8931 on the invasiveness and metastasis of IBC. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Epidermal growth factor receptor (EGFR) overexpression has been associated with prognostic and predictive value in inflammatory breast cancer (IBC). Epidermal growth factor receptor 2 (HER2) overexpression is observed at a higher rate in IBC compared with noninflammatory breast cancer. Current clinically available anti-HER2 therapies are effective only in patients with HER2 amplified breast cancer, including IBC. AZD8931 is a novel small-molecule equipotent inhibitor of EGFR, HER2, and HER3 signaling. In this study, we investigated the antitumor activity of AZD8931 alone or in combination with paclitaxel using preclinical models of EGFR-overexpressed and HER2 non-amplified IBC cells. Methods Two IBC cell lines SUM149 and FC-IBC-02 derived from pleural effusion of an IBC patient were used in this study. Cell growth and apoptotic cell death were examined in vitro. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. AZD8931 was given by daily oral gavage at doses of 25 mg/kg, 5 days/week for 4 weeks. Paclitaxel was subcutaneously injected twice weekly. Results AZD8931 significantly suppressed cell growth of IBC cells and induced apoptosis of human IBC cells in vitro. Significantly, we showed that AZD8931 monotherapy inhibited xenograft growth and the combination of paclitaxel + AZD8931 was demonstrably more effective than paclitaxel or AZD8931 alone treatment at delaying tumor growth in vivo in orthotopic IBC models. Conclusion AZD8931 single agent and in combination with paclitaxel demonstrated signal inhibition and antitumor activity in EGFR-overexpressed and HER2 non-amplified IBC models. These results suggest that AZD8931 may provide a novel therapeutic strategy for the treatment of IBC patients with HER2 non-amplified tumors.
    Journal of Experimental & Clinical Cancer Research 05/2014; 33(1):47. DOI:10.1186/1756-9966-33-47 · 4.43 Impact Factor
Show more