Intraoperative and Postoperative Effects of Corneal Collagen Cross-linking on Progressive Keratoconus

Department of Ophthalmology, Istituto Clinico Humanitas, Via Manzoni 56, Rozzano 20089, Milan, Italy.
Archives of ophthalmology (Impact Factor: 4.4). 10/2009; 127(10):1258-65. DOI: 10.1001/archophthalmol.2009.205
Source: PubMed


To report intraoperative and 24-month refractive, topographic, tomographic, and aberrometric outcomes after corneal collagen cross-linking in progressive advanced keratoconus.
Prospective, nonrandomized single-center clinical study involving 28 eyes. Main outcome measures included uncorrected and best spectacle-corrected visual acuities, sphere and cylinder refraction, topography, tomography, aberrometry, and endothelial cell count evaluated at baseline and follow-up at 1, 3, 6, 12, and 24 months after treatment. Topography was also recorded intraoperatively.
Two years after treatment, mean baseline uncorrected and best spectacle-corrected visual acuities improved significantly (P = .048 and <.001, respectively) and mean spherical equivalent refraction decreased significantly (P = .03). Mean baseline flattest and steepest meridians on simulated keratometry, simulated keratometry average, mean average pupillary power, and apical keratometry all decreased significantly (P < .03). Deterioration of the Klyce indices was observed in the untreated contralateral eyes but not in treated eyes. Total corneal wavefront aberrations Z(0) (piston), Z(2) (defocus), and Z(7) (III coma) decreased significantly (P < or = .046). Mean 12-month baseline pupil center pachymetry and total corneal volume decreased significantly (P = .045). Endothelial cell counts did not change significantly (P = .13).
Two years postoperatively, corneal collagen cross-linking appears to be effective in improving uncorrected and best spectacle-corrected visual acuities in eyes with progressive keratoconus by significantly reducing corneal average pupillary power, apical keratometry, and total corneal wavefront aberrations.

Download full-text


Available from: Elena Albé,
  • Source
    • "Nowadays, collagen cross-linking is an important asset in the management of keratoconus as a series of peer-reviewed studies have demonstrated its safety and efficacy in halting the progression of the disease and avoiding the need for corneal transplantation [10] [11] [12] [13] [14] [15]. Some improvement in visual acuity, flattening of keratometric readings, and reduction in comatic aberrations have also been reported following cross-linking [12] [13] [14] [15]. The encouraging safety-efficacy profile with follow-up ranging between 5 and 10 years in some series [13] [14] [15] has led many authors to consider cross-linking in pediatric patients and a rising number of reports on such attempts are being published. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Keratoconus is a degenerative disease that affects adolescents and young adults and presents with variable thinning and conical deformation of the corneal apex. The resultant irregular astigmatism can progress to levels that can significantly affect everyday activities and overall quality of life. Therefore, stopping the progression of the disease is an essential part in managing patients with keratoconus. Corneal collagen cross-linking is a minimally invasive procedure that stiffens the anterior corneal stroma by creating strong covalent bonds between collagen fibrils. Over the past decade, many studies have proved its safety and efficacy in halting keratoconus progression in adults. This review of the literature highlights the growing trend towards using this treatment in pediatric keratoconic patients. In children, keratoconus tends to be more severe and fast progression is often encountered requiring closer follow-up intervals. Standard cross-linking shows comparable results in children with a good safety-efficacy profile during follow-up periods of up to three years. Further research is needed to standardize and evaluate transepithelial and accelerated cross-linking protocols as these could be of tremendous help in a population where cooperation and compliance are major issues.
    BioMed Research International 01/2015; 2015(25):927. DOI:10.1155/2015/257927 · 2.71 Impact Factor
  • Source
    • "It is important to mention here that the use of steroid eye drops and their duration after CXL highly depend on the ophthalmologists’ practice. In generally, steroids are administered 0-4 weeks after CXL treatment [5-8,11,22,27]. In contrast, we have used fluorometholone drops for minimum 3 months and found no increase in the mean intraocular pressure postoperatively (data not shown). Corneal thickness and posterior elevation at minimum pachymetry proved to be highly reliable diagnostic parameters of KC and to monitor the treatment efficacy after CXL [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Keratoconus (KC) is the most common primary corneal ectatic disease which has considerable importance in public health. Corneal collagen crosslinking (CXL) is a procedure to mitigate progression of KC and reduce demand for corneal transplantation. Although studies have proven the efficacy of CXL regarding corneal shape, none have investigated the effects of CXL on tear biomarkers which are useful tools to understand molecular mechanisms behind CXL. Our purpose was to determine the effect of CXL on tear mediators in patients with KC and analyze associations with corneal changes. Tear samples were collected pre-CXL from 26 eyes of 23 patients and during a 12-month follow-up. The mediators' concentration was measured by Cytometric Bead Array technology. Corneal topography parameters measured by Scheimpflug Camera included: Thinnest-corneal-thickness (ThCT), keratometry values (K1, K2), Radii-Minimum (Rmin), Keratoconus-Index (KI), Center-KI (CKI), Index-of-Height Asymmetry (IHA) and Index-of-Surface Variance (ISV). At baseline, KI was correlated negatively with chemokine (C-C motif) ligand 5 (CCL5) (p=0.015) and matrix metalloproteinase (MMP)-13 (p=0.007). At day 4, interleukin (IL)-6 and IL-8 increased, while IL-13, IL-17A, interferon (IFN)-γ, CCL5, MMP-13, epidermal growth factor (EGF), nerve growth factor (NGF) and plasminogen activator inhibitor (PAI-1) decreased significantly compared to pre-CXL concentrations (p≤0.02). At 6 months tissue plasminogen activator (t-PA) increased (p=0.02), while at 12 months Rmin increased (p≤0.004), and IL-6 and CXCL8 (p=0.005 and p=0.047) as well as K1, ISV and KI decreased. After 6 months CKI and ISV showed significant associations with IL-17A; CKI with IL-13 and ThCT with IL-13 (p≤0.02), while at 12 months there were reverse associations between ThCT and IL-6, IL-13, INFγ, CCL5 and PAI-1 (p≤0.02). Alterations of mediators in tear fluid after CXL associate with topographic changes highlight the fact that many mediators are involved in the complex mechanisms after CXL. Further studies on biomarkers to investigate the efficacy of CXL are needed.
    PLoS ONE 10/2013; 8(10):e76333. DOI:10.1371/journal.pone.0076333 · 3.23 Impact Factor
  • Source
    • "When the tenets of the Dresden protocol are not violated, the CXL procedure is believed to pose no threat to the corneal endothelium.[28] Studies have also confirmed that the corneal endothelium cell loss is not significant at 12 months after CXL.[8429] Such data is lacking with the combined T-CAT + CXL procedure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To compare the outcome of Collagen cross-linking (CXL) with that following topography-guided customized ablation treatment (T-CAT) with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group (P = 0.1) and 2.87 ± 3.22 D in the T-CAT + CXL group (P = 0.04). The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D (P = 0.77) in the CXL group and by 2.91 ± 2.01D (P = 0.03) in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D (P = 0.01) and 0.72 ± 1.18 (P = 0.02) respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both). There was significantly greater reduction of mean coma (P < 0.001) and mean higher-order aberrations (P = 0.01) following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.
    Indian Journal of Ophthalmology 04/2013; 62(2). DOI:10.4103/0301-4738.111209 · 0.90 Impact Factor
Show more