CONFERENCE REPORT: Transfusion-transmitted babesiosis in the United States: summary of a workshop

Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, Maryland 20852, USA.
Transfusion (Impact Factor: 3.57). 10/2009; 49(12):2759-71. DOI: 10.1111/j.1537-2995.2009.02429.x
Source: PubMed

ABSTRACT Infections of humans with intraerythrocytic parasites of the genus Babesia can be locally prevalent in diverse regions of the United States. Transfusion of blood and blood products collected from donors infected with Babesia may result in a serious illness that can be fatal. In September 2008, the Food and Drug Administration organized a public workshop to discuss the various aspects of transfusion-transmitted babesiosis in the United States including the possible strategies to identify and defer blood donors who may have been infected with Babesia. Discussions were also held on the biology, pathogenesis, and epidemiology of Babesia species. In this article, we summarize the scientific presentations and panel discussions that took place during the workshop.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different time courses of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naïve mice resulted in a slight reduction in parasitemia with improved survival, as compared to mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell-cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophage at different time courses exaggerated the pathogenesis of the infection in deficient IFN-γ(-)/(-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provides important clues about the role of macrophages in the resistance and control of B. microti and implies that the severity of the infection in immunocompromised patients might be due to impairment of the macrophages' function.
    Infection and Immunity 10/2014; 83(1). DOI:10.1128/IAI.02128-14 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Babesiosis is a zoonosis caused by tick-transmitted intraerythrocytic protozoa of the Phylum Apicomplexa. The disease mostly occurs in the USA, but cases have also been reported in several European countries, in Egypt, India, Japan, Korea, Taiwan, and South Africa. The main pathological event is lysis of erythrocytes resulting in haemolytic anaemia, which in severe cases may lead to organ failure and death, particularly in immunocompromised patients. The 2 groups of parasites involved, Babesia microti-like and Babesia sensu stricto (s.s.) species, differ in their life cycle characteristics and susceptibility to antibabesial drugs. Molecular taxonomy is now making a major contribution to the identification of novel pathogens within both groups. Effective treatment of severe cases was initially hampered by the lack of specific antibabesial drugs for human use, but increased use of supportive measures and of the recently developed antimalarial, atovaquone, particularly in combination with azithromycin, has improved the prospects for management of acute disease especially when caused by Babesia s.s. species. Prevention should be based primarily on increasing the awareness of physicians and the public to the risks, but infection from blood transfusions is particularly difficult to prevent. Expanding deer populations, resulting in wider distribution and greater abundance of ticks, heightened medical awareness, and growing numbers of immunocompromised patients are likely to result in a continuing rise of reported cases.
    Ticks and Tick-borne Diseases 03/2010; 1(1):3-10. DOI:10.1016/j.ttbdis.2009.11.003 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the induction of immune regulatory cells upon helminth infection is important for understanding the control of autoimmunity and allergic inflammation in helminth infection. Babesia microti, an intraerythrocytic protozoan of the genus Babesia, is a major cause of the emerging human disease babesiosis, an asymptomatic malaria-like disease. We examined the influence of acute B. microti infection on the development of regulatory B cells together with regulatory T cells. Our data demonstrate that B cells stimulated in vitro with B. microti produce interleukin (IL)-10. This cytokine is also secreted by B cells isolated from B. microti-infected mice in response to lipopolysaccharide stimulation. In addition, high levels of IL-10 were detected in the serum of mice after infection with B. microti. The frequency of IL-10-producing CD1d(high)CD5(+) regulatory B cells (Bregs) and CD4(+)CD25(+)FoxP3(+) T cells increased during the course of B. microti infection. Furthermore, adoptive transfer of IL-10-producing B cells induced by B. microti infection led to increased susceptibility of recipient mice to infection with B. microti. In contrast, experiments with B cell-deficient (µMT) mice demonstrated that lack of B cells enhances susceptibility to B. microti infection. This study is the first demonstration of the expansion of Bregs following infection by an intraerythrocytic protozoan parasite. These data suggest that B. microti infection in mice provides an excellent model for studying Breg-mediated immune responses and begins to elucidate the mechanism by which helminth infection regulates autoimmunity and allergic inflammation.
    PLoS ONE 10/2012; 7(10):e46553. DOI:10.1371/journal.pone.0046553 · 3.53 Impact Factor