Article

NK gene complex and chromosome 19 loci enhance MHC resistance to murine cytomegalovirus infection.

Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Immunogenetics (Impact Factor: 2.49). 10/2009; 61(11-12):755-64. DOI: 10.1007/s00251-009-0400-0
Source: PubMed

ABSTRACT An H-2(k) MHC locus is critical for murine cytomegalovirus (MCMV) resistance in MA/My mice and virus control is abolished if H-2(k) is replaced with H-2(b) MHC genes from MCMV-susceptible C57L mice. Yet, H-2(k) resistance varies with genetic background; thus, modifiers of virus resistance must exist. To identify non-MHC resistance loci, spleen and liver MCMV levels and genome-wide genotypes were assessed in (C57L x MA/My) and (MA/My x C57L) F(2) offspring (representing 550 meioses). Significantly, a non-Mendelian frequency of MHC genotypes was observed for offspring of the latter cross. Quantitative trait loci (QTL) and their interaction potential in MCMV resistance were assessed in R/qtl; QTL on chromosomes 17, 6, and 19 affected MCMV levels in infected animals. A chromosome 6 QTL was linked with the NK gene complex and acted in an additive fashion with an H-2(k) MHC QTL to mitigate spleen MCMV levels. We provide biological confirmation that this chromosome 6 QTL provided MCMV control independent of H-2(k) via NK cells. Importantly, both chromosome 6 and 19 QTLs contribute to virus control independent of H-2(k). Altogether, MHC and non-MHC MCMV-resistance QTL contribute in early resistance to MCMV infection in this genetic system.

0 Followers
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the role of viral variants has long been known to play a key role in causing variation in disease severity, it is also clear that host genetic variation plays a critical role in determining virus-induced disease responses. However, a variety of factors, including confounding environmental variables, rare genetic variants requiring extremely large cohorts, the temporal dynamics of infections, and ethical limitation on human studies, have made the identification and dissection of variant host genes and pathways difficult within human populations. This difficulty has led to the development of a variety of experimental approaches used to identify host genetic contributions to disease responses. In this chapter, we describe the history of genetic associations within the human population, the development of experimentally tractable systems, and the insights these specific approaches provide. We conclude with a discussion of recent advances that allow for the investigation of the role of complex genetic networks that underlie host responses to infection, with the goal of drawing connections to human infections. In particular, we highlight the need for robust animal models with which to directly control and assess the role of host genetics on viral infection outcomes.
    Advances in Virus Research 01/2014; 88:193-225. DOI:10.1016/B978-0-12-800098-4.00004-0 · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MHC class I D(k) and Ly49G2 (G2) inhibitory receptor-expressing NK cells are essential to murine CMV (MCMV) resistance in MA/My mice. Without D(k), G2(+) NK cells in C57L mice fail to protect against MCMV infection. As a cognate ligand of G2, D(k) licenses G2(+) NK cells for effector activity. These data suggested that D(k)-licensed G2(+) NK cells might recognize and control MCMV infection. However, a role for licensed NK cells in viral immunity is uncertain. We combined classical genetics with flow cytometry to visualize the host response to MCMV. Immune cells collected from individuals of a diverse cohort of MA/My × C57L offspring segregating D(k) were examined before infection and postinfection, including Ly49(+) NK subsets, receptor expression features, and other phenotypic traits. To identify critical NK cell features, automated analysis of 110 traits was performed in R using the Pearson correlation, followed with a Bonferroni correction for multiple tests. Hierarchical clustering of trait associations and principal component analyses were used to discern shared immune response and genetic relationships. The results demonstrate that G2 expression on naive blood NK cells was predictive of MCMV resistance. However, rapid G2(+) NK cell expansion following viral exposure occurred selectively in D(k) offspring; this response was more highly correlated with MCMV control than all other immune cell features. We infer that D(k)-licensed G2(+) NK cells efficiently detected missing-self MHC cues on viral targets, which elicited cellular expansion and target cell killing. Therefore, MHC polymorphism regulates licensing and detection of viral targets by distinct subsets of NK cells required in innate viral control.
    The Journal of Immunology 09/2013; 191(9). DOI:10.4049/jimmunol.1301388 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sequenced the complete genome of the widely used C57L/J mouse inbred strain. With 40x average coverage we compared the C57L/J sequence with that of the C57BL/6J and identified many known, as well as novel private variants. This genome sequence adds another strain to the growing number of mouse inbred strains with complete genome sequences and is a valuable resource to the scientific community.
    G3-Genes Genomes Genetics 07/2014; 4(9). DOI:10.1534/g3.114.012997 · 2.51 Impact Factor

Preview

Download
0 Downloads
Available from