Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice.

Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
Journal of Experimental Botany (Impact Factor: 5.79). 10/2009; 61(1):191-202. DOI: 10.1093/jxb/erp294
Source: PubMed

ABSTRACT Oryza meridionalis Ng. is a wild relative of Oryza sativa L. found throughout northern Australia where temperatures regularly exceed 35 degrees C in the monsoon growing season. Heat tolerance in O. meridionalis was established by comparing leaf elongation and photosynthetic rates at 45 degrees C with plants maintained at 27 degrees C. By comparison with O. sativa ssp. japonica cv. Amaroo, O. meridionalis was heat tolerant. Elongation rates of the third leaf of O. meridionalis declined by 47% over 24 h at 45 degrees C compared with a 91% decrease for O. sativa. Net photosynthesis was significantly higher in O. sativa at 27 degrees C whereas the two species had the same assimilation rates at 45 degrees C. The leaf proteome and expression levels of individual heat-responsive genes provided insight into the heat response of O. meridionalis. After 24 h of heat exposure, many enzymes involved in the Calvin Cycle were more abundant, while mRNA of their genes generally decreased. Ferredoxin-NADP(H) oxidoreductase, a key enzyme in photosynthetic electron transport had both reduced abundance and gene expression, suggesting light reactions were highly susceptible to heat stress. Rubisco activase was strongly up-regulated after 24 h of heat, with the large isoform having the largest relative increase in protein abundance and a significant increase in gene expression. The protective proteins Cpn60, Hsp90, and Hsp70 all increased in both protein abundance and gene expression. A thiamine biosynthesis protein (THI1), previously shown to act protectively against stress, increased in abundance during heat, even as thiamine levels fell in O. meridionalis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing severity of high temperature worldwide presents an alarming threat to the humankind. As evident by massive yield losses in various food crops, the escalating adverse impacts of heat stress (HS) are putting the global food as well as nutritional security at great risk. Intrinsically, plants respond to high temperature stress by triggering a cascade of events and adapt by switching on numerous stress-responsive genes. However, the complex and poorly understood mechanism of heat tolerance (HT), limited access to the precise phenotyping techniques, and above all, the substantial G × E effects offer major bottlenecks to the progress of breeding for improving HT. Therefore, focus should be given to assess the crop diversity, and targeting the adaptive/morpho-physiological traits while making selections. Equally important is the rapid and precise introgression of the HT-related gene(s)/QTLs to the heat-susceptible cultivars to recover the genotypes with enhanced HT. Therefore, the progressive tailoring of the heat-tolerant genotypes demands a rational integration of molecular breeding, functional genomics and transgenic technologies reinforced with the next-generation phenomics facilities.
    Plant Breeding 10/2014; · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the declarations and collective measures taken to eradicate hunger at World Food Summits, food security remains one of the biggest issues that we are faced with. The current scenario could worsen due to the alarming increase in world population, further compounded by adverse climatic conditions, such as increase in atmospheric temperature, unforeseen droughts and decreasing soil moisture, which will decrease crop yield even further. Furthermore, the projected increase in yields of C3 crops as a result of increasing atmospheric CO2 concentrations is much less than anticipated. Thus, there is an urgent need to increase crop productivity beyond existing yield potentials to address the challenge of food security. One of the domains of plant biology that promises hope in overcoming this problem is study of C3 photosynthesis. In this review, we have examined the potential bottlenecks of C3 photosynthesis and the strategies undertaken to overcome them. The targets considered for possible intervention include RuBisCO, RuBisCO activase, Calvin–Benson–Bassham cycle enzymes, CO2 and carbohydrate transport, and light reactions among many others. In addition, other areas which promise scope for improvement of C3 photosynthesis, such as mining natural genetic variations, mathematical modelling for identifying new targets, installing efficient carbon fixation and carbon concentrating mechanisms have been touched upon. Briefly, this review intends to shed light on the recent advances in enhancing C3 photosynthesis for crop improvement.
    Plant Biotechnology Journal 09/2014; · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and
    The Plant Cell 11/2014; · 9.58 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014