Article

Effect of Mg(2+), Sr(2+), and Mn(2+) on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings.

Department of Chemistry G. Ciamician, University of Bologna, 40126 Bologna, Italy.
Journal of inorganic biochemistry (Impact Factor: 3.25). 09/2009; 103(12):1666-74. DOI: 10.1016/j.jinorgbio.2009.09.009
Source: PubMed

ABSTRACT We previously developed a calcium phosphate (CaP) calcifying solution that allows to deposit a uniform layer of nanocrystalline apatite on metallic implants in a few hours. In this work we modified the composition of the CaP solution by addition of Sr(2+), Mg(2+), and Mn(2+), in order to improve the biological performance of the implants. The results of the investigation performed on the coatings, as well as on the powders precipitated in the absence of the substrates, indicate that both Sr(2+) and Mg(2+) reduce the extent of precipitation, although they are quantitatively incorporated into the nanocrystalline apatitic phase. The inhibitory effect on deposition is much more evident for Mn(2+), which completely hinders the precipitation of apatite and yields just a small amount of amorphous phosphate relatively rich in manganese content. Human osteoblast-like MG-63 cells cultured on the different materials show that the Mg(2+) and Sr(2+) apatitic coatings promote proliferation and expression of collagen type I, with respect to bare Ti and to the thin layer of amorphous phosphate obtained in the presence of Mn(2+). However, the relatively high content of Mn(2+) in the phosphate has a remarkable beneficial effect on osteocalcin production, which is even greater than that observed for Sr(2+).

1 Bookmark
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium phosphate (CaP) coatings have been studied to tailor the uncontrolled non-uniform corrosion of Mg based alloys while simultaneously enhancing bioactivity. The use of immersion techniques to deposit CaP coatings is attractive due to the ability of the approach to coat complex structures. In the current study, AZ31 substrates were subjected to various pretreatment conditions prior to depositing Sr(2+) doped and undoped CaP coatings. It was hypothesized that the bioactivity and corrosion protection of CaP coatings could be improved by doping with Sr(2+). Heat treatment to elevated temperatures resulted in the diffusion of alloying elements, Mg and Zn, into the pretreated layer. Sr(2+) doped and undoped CaP coatings formed on the pretreated substrates consisted of biphasic mixtures of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA). Electrochemical corrosion experiments indicated that the extent of Sr(2+) doping and pretreatment both influenced the corrosion protection. Cytotoxicity was evaluated with MC3T3-E1 mouse preosteoblasts and human mesenchymal stem cells (hMSCs). For both cell types, proliferation decreased upon increasing the Sr(2+) concentration. However, both osteogenic gene and protein expression significantly increased upon increasing Sr(2+) concentration. These results suggest that Sr(2+) doped coatings are capable of promoting osteogenic differentiation on degradable Mg alloys, while also enhancing corrosion protection, in comparison to undoped CaP coatings.
    Materials science & engineering. C, Materials for biological applications. 07/2014; 40C:357-365.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vitro proliferation and differentiation of osteoblast-like cells (MC3T3-E1 cell line) in the presence of Mn-doped β − TCP powders are strongly influenced by the added amount of Mn.
    Journal of Inorganic Biochemistry 01/2014; · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone–implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson–Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 05/2014; · 2.31 Impact Factor