Article

The effects of UV disinfection on drinking water quality in distribution systems.

Division of R&D for Water, Waterworks Research Institute, Seoul Metropolitan Government, 552-1, Chunho Daero, Kwangjin-Ku, Seoul, Republic of Korea, 143-820.
Water Research (Impact Factor: 4.66). 09/2009; 44(1):115-22. DOI: 10.1016/j.watres.2009.09.011
Source: PubMed

ABSTRACT UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV(254,) SUVA(254), the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.

1 Bookmark
 · 
217 Views
  • Biophysical Journal 01/2011; 100(3). · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed the usability of effluent water discharged from a secondary municipal wastewater treatment plant for mass cultivation of microalgae for biofuel production. It was observed that bacteria and protozoa in the effluent water exerted a negative impact on the growth of Chlorella sp. 227. To reduce the effect, filtration or UV-radiation were applied on the effluent water as pre-treatment methods. Of all the pretreatment options tested, the filtration (by 0.2 μm) resulted in the highest biomass and lipid productivity. To be comparable with the growth in the autoclaved effluent water, the filtration with a proper pore size filter (less than 0.45 μm) or UV-B radiation of a proper dose (over 1620 mJ cm(-2)) are proposed. These findings led us to conclude that the utilization can be realized only when bacteria and other microorganisms are greatly reduced or eliminated from the effluent prior to its use.
    Bioresource Technology 03/2011; 102(18):8639-45. · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.
    The Journal of Microbiology 02/2012; 50(1):17-28. · 1.28 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
May 22, 2014