Article

Dissociation between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats in baseline performance and methylphenidate response on measures of attention, impulsivity and hyperactivity in a Visual Stimulus Position Discrimination Task.

Laboratory of Neuroimaging, NIAAA, NIH, Dept of Health and Human Services, Bethesda, MD 20892, USA.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 10/2009; 94(3):374-9. DOI: 10.1016/j.pbb.2009.09.019
Source: PubMed

ABSTRACT The spontaneously hypertensive rat (SHR) is a widely accepted rodent model of Attention Deficit/Hyperactivity Disorder (ADHD), and methylphenidate (MP) is a central nervous system stimulant that has been shown to have a dose-related positive effect on attention task performance in humans with ADHD. The current study was undertaken to compare SHR to its typical control strain, Wistar-Kyoto (WKY) rats, on the performance of a Visual Stimulus Position Discrimination Task (VSPDT) as well as of the responsiveness of the two rat strains to MP treatment. The rats were initially trained on the VSPDT, in which a light cue was presented randomly at three different cue-light intervals (1s, 300ms and 100ms) over one of two levers, and presses on the lever corresponding to the light cue were reinforced with a food pellet. Once rats reached stable performance, the treatment phase of the study began, during which they received daily intraperitoneal (IP) injections of saline, 2mg/kg, 5mg/kg, and 10mg/kg of MP in a randomized order immediately prior to being tested on the VSPDT. Baseline performance accuracy on the VSPDT did not differ between the groups. Furthermore, a striking strain dissociation was evident in the response of the two strains to treatment; VSPDT performance was substantially disrupted by the 5 and 10mg/kg dose in the WKY rats but only mildly in the SHR rats. Response omissions were also increased only in WKY rats. Finally, both strains had increased locomotor activity in the operant chamber following MP treatment. These findings point to an important difference in response tendency to MP in the two strains that supports a view that a critical difference between these strains may suggest neurochemical and neuroadaptive differences associated with the behavioral impairments of ADHD.

0 Followers
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although both genetic and non-genetic factors are known to contribute to the occurrence of Attention-Deficit Hyperactivity/Disorder (ADHD), little is known about how they impact specific symptoms. We used a cross-fostering approach with an established animal model of ADHD, the Spontaneously Hypertensive Rat strain (SHR), to test the influence of genotype and maternal behavior on ADHD-related behaviors. SHRs and their normo-active genetic relative, Wistar Kyoto rats (WKY), were cross-fostered to an unfamiliar dam of either the same or different strain. Behavioral testing took place when the rats reached adulthood. Locomotor hyperactivity was completely dependent on the strain of the offspring. In contrast, social behavior was primarily determined by the strain of the mother, while attentional orienting behavior was influenced by both the strain of the offspring and the strain of the dam. Anxiety-related behavior was influenced by an interaction between offspring and dam strain. © 2015 Wiley Periodicals, Inc. Dev Psychobiol
    Developmental Psychobiology 02/2015; DOI:10.1002/dev.21286 · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research examining medication effects on set shifting in teens with attention deficit/hyperactivity disorder (ADHD) is lacking. An animal model of ADHD may be useful for exploring this gap. The Spontaneously Hypertensive Rat (SHR) is a commonly used animal model of ADHD. SHR and two comparator strains, Wistar-Kyoto (WKY) and Wistar (WIS), were evaluated during adolescence in a strategy set shifting task under conditions of a 0-sec or 15-sec delay to reinforcer delivery. The task had three phases: initial discrimination, set shift and reversal learning. Under 0-sec delays, SHR performed as well as or better than WKY and WIS. Treatment with 0.3mg/kg/day atomoxetine had little effect, other than to modestly increase trials to criterion during set shifting in all strains. Under 15-sec delays, SHR had longer lever press reaction times, longer latencies to criterion and more trial omissions than WKY during set shifting and reversal learning. These deficits were not reduced systematically by 1.5mg/kg/day methylphenidate or 0.3mg/kg/day atomoxetine. Regarding learning in SHR, methylphenidate improved initial discrimination, whereas atomoxetine improved set shifting but disrupted initial discrimination. During reversal learning, both drugs were ineffective in SHR, and atomoxetine made reaction time and trial omissions greater in WKY. Overall, WIS performance differed from SHR or WKY, depending on phase. Collectively, a genetic model of ADHD in adolescent rats revealed that neither methylphenidate nor atomoxetine mitigated all deficits in SHR during the set shifting task. Thus, methylphenidate or atomoxetine monotherapy may not mitigate all set shift task-related deficits in teens with ADHD.
    Behavioural brain research 01/2013; DOI:10.1016/j.bbr.2013.01.027 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-deficit hyperactivity disorder (ADHD) is associated with a higher prevalence of smoking, which may be related to potential therapeutic effects of nicotine on ADHD symptoms. Whereas nicotine offers robust improvements in sustained attention, the effects of nicotine on impulsivity are unclear. The present study examined the effects of nicotine on the response inhibition capacity of spontaneously hypertensive rats (SHR), an animal model of ADHD, compared to that of a normotensive control Wistar Kyoto (WKY), using the fixed minimum interval (FMI) schedule of reinforcement. Tests were conducted following acute injections of subcutaneous nicotine (0.1-0.6 mg/kg). On each FMI trial, the first lever press initiated an inter-response time (IRT); a head entry into a food receptacle terminated the IRT. IRTs longer than 6 s were intermittently reinforced with sucrose. A model that assumes that only a proportion of IRTs are sensitive to the timing contingencies of the FMI provided a close fit to the data, regardless of strain or treatment. No baseline difference in FMI performance was observed between SHR and WKY. Nicotine reduced the duration of timed IRTs and the duration of latencies to the IRT-initiating lever press similarly for both strains. Nicotine dose-dependently increased the proportion of timed IRTs; the dose-response curve was shifted leftwards in SHR relative to WKY. These results suggest that nicotine (a) reduces response-inhibition capacity, (b) enhances the reinforcing efficacy of sucrose, and (c) dose-dependently enhances attention-like sensitivity to contingencies of reinforcement, through mechanisms that are yet unknown.
    Psychopharmacology 01/2014; DOI:10.1007/s00213-013-3412-2 · 3.99 Impact Factor

Full-text (2 Sources)

Download
82 Downloads
Available from
May 31, 2014