Article

A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog.

Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
Cell stem cell (Impact Factor: 23.56). 10/2009; 5(5):491-503. DOI: 10.1016/j.stem.2009.09.012
Source: PubMed

ABSTRACT The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog.

5 Bookmarks
 · 
715 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) can be achieved by ectopic expression of defined transcription factors (Oct3/4, Sox2, Klf4 and c-Myc). However, to date, some iPSCs have been generated using viral vectors; thus, unexpected insertional mutagenesis in the target cells would be a potential risk. Here we report reprogramming of siPSCs (gene silencing-induced pluripotent stem cells) from mouse neonatal cardiomyocytes (CMs) by combining TGF-β signal inhibition and connexin43 (Cx43) silencing, and show that siPSCs show pluripotency in vitro and in vivo. Our novel non-insertional mutagenesis technique may provide a means for iPSC generation.
    Scientific Reports 12/2014; 4:7323. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract β-Cell replacement therapy is a promising field of research that is currently evaluating new sources of cells for clinical use. Pancreatic epithelial cells are potent candidates for β-cell engineering, but their large-scale expansion has not been evidenced yet. Here we describe the efficient expansion and β-cell differentiation of purified human pancreatic duct cells (DCs). When cultured in endothelial growth-promoting media, purified CA19-9(+) cells proliferated extensively and achieved up to 22 population doublings over nine passages. While proliferating, human pancreatic duct-derived cells (HDDCs) downregulated most DC markers, but they retained low CK19 and SOX9 gene expression. HDDCs acquired mesenchymal features but differed from fibroblasts or pancreatic stromal cells. Coexpression of duct and mesenchymal markers suggested that HDDCs were derived from DCs via a partial epithelial-to-mesenchymal transition (EMT). This was supported by the blockade of HDDC appearance in CA19-9(+) cell cultures after incubation with the EMT inhibitor A83-01. After a differentiation protocol mimicking pancreatic development, HDDC populations contained about 2% of immature insulin-producing cells and showed glucose-unresponsive insulin secretion. Downregulation of the mesenchymal phenotype improved β-cell gene expression profile of differentiated HDDCs without affecting insulin protein expression and secretion. We show that pancreatic ducts represent a new source for engineering large amounts of β-like-cells with potential for treating diabetes.
    Cellular Reprogramming 12/2014; 16(6):456-66. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.
    Cellular and Molecular Life Sciences CMLS 01/2015; · 5.86 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
Jul 4, 2014