Differential Expression of Interleukin-17A and -17F Is Coupled to T Cell Receptor Signaling via Inducible T Cell Kinase

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Immunity (Impact Factor: 19.75). 10/2009; 31(4):587-97. DOI: 10.1016/j.immuni.2009.07.009
Source: PubMed

ABSTRACT T helper 17 (Th17) cells play major roles in autoimmunity and bacterial infections, yet how T cell receptor (TCR) signaling affects Th17 cell differentiation is relatively unknown. We demonstrate that CD4(+) T cells lacking Itk, a tyrosine kinase required for full TCR-induced phospholipase C-gamma (PLC-gamma1) activation, exhibit decreased interleukin-17A (IL-17A) expression in vitro and in vivo, despite relatively normal expression of retinoic acid receptor-related orphan receptor-gammaT (ROR-gammaT) and IL-17F. IL-17A expression was rescued by pharmacologically induced Ca(2+) influx or constitutively activated nuclear factor of activated T cells (NFAT). Conversely, decreased TCR stimulation or calcineurin inhibition preferentially reduced IL-17A expression. We further found that the promoter of Il17a but not Il17f has a conserved NFAT binding site that bound NFATc1 in wild-type but not Itk-deficient cells, even though both exhibited open chromatin conformations. Finally, Itk(-/-) mice also showed differential regulation of IL-17A and IL-17F in vivo. Our results suggest that Itk specifically couples TCR signaling to Il17a expression and the differential regulation of Th17 cell cytokines through NFATc1.


Available from: Pamela L Schwartzberg, May 18, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8(+) T cell homeostasis; and IL-4-induced innate memory CD8(+) T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. © Society for Leukocyte Biology.
    Journal of Leukocyte Biology 03/2015; 97(3):477-485. DOI:10.1189/jlb.1RI0614-293R · 4.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS. Copyright © 2015 the authors 0270-6474/15/350221-13$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2015; 35(1):221-233. DOI:10.1523/JNEUROSCI.1957-14.2015 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphoinositide 3-kinase (PI 3-kinase, PI3K) pathway transduces signals critical for lymphocyte function. PI3K generates the phospholipid PIP3 at the plasma membrane to recruit proteins that contain pleckstrin homology (PH) domains - a conserved domain found in hundreds of mammalian proteins. PH domain-PIP3 interactions allow for rapid signal propagation and confer a spatial component to these signals. The kinases Akt and Itk are key PI3K effectors that bind PIP3 via their PH domains and mediate vital processes - such as survival, activation, and differentiation - in lymphocytes. Here, we review the roles and regulation of PI3K signaling in lymphocytes with a specific emphasis on Akt and Itk. We also discuss these and other PH domain-containing proteins as they relate more broadly to immune cell function. Finally, we highlight the emerging view of PH domains as multifunctional protein domains that often bind both lipid and protein substrates to exert their effects.
    Frontiers in Immunology 03/2015; 6. DOI:10.3389/fimmu.2015.00117