Predictive modeling of a mixture of thyroid hormone disrupting chemicals that affect production and clearance of thyroxine.

Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, USA.
International Journal of Toxicology (Impact Factor: 1.23). 10/2009; 28(5):368-81. DOI: 10.1177/1091581809341883
Source: PubMed

ABSTRACT Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T(4)). This research tested the hypothesis that serum T(4) concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticides) and stimulators of T(4) clearance in the liver (polyhalogenated aromatic hydrocarbons, PHAHs) could be best predicted by an integrated addition model. Female Long-Evans rats, 23 days of age, were dosed with dilutions of a mixture of 18 PHAHs (2 dioxins, 4 dibenzofurans, and 12 PCBs, including dioxin-like and non-dioxin like PCBs) and a mixture of 3 pesticides (thiram, pronamide, and mancozeb) for four consecutive days. Serum was collected 24 hours after the last exposure and T(4) concentrations were measured by radioimmunoassay. Animals exposed to the highest dose of the mixture experienced a 45% decrease in serum T(4). Three additivity model predictions (dose addition, effect addition, and integrated addition) were generated based on single chemical data, and the results were compared. Effect addition overestimated the effect produced by the combination of all 21 chemicals. The results of the dose- and integrated-addition models were similar, and both provided better predictions than the effect-addition model. These results support the use of dose- and integrated additivity models in predicting the effects of complex mixtures.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental regulatory edicts within the EU, such as the regulatory framework for chemicals REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals), the Water Framework Directive (WFD), and the Marine Strategy Framework Directive (MSFD) focus mainly on toxicity assessment of individual chemicals although the effect of contaminant mixtures is a matter of increasing concern. This discussion paper provides an overview of the field of combined effects in aquatic ecotoxicology and addresses some of the major challenges related to assessment of combined effects in connection with environmental risk assessment (ERA) and regulation. Potentials and obstacles related to different experimental, modelling and predictive ERA approaches are described. On-going ERA guideline and manual developments in Europe aiming to incorporate combined effects of contaminants, the use of different experimental approaches for providing combined effect data, the involvement of biomarkers to characterize Mode of Action and toxicity pathways and efforts to identify relevant risk scenarios related to combined effects are discussed.
    Marine environmental research 11/2013; DOI:10.1016/j.marenvres.2013.10.008 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pesticides acting as endocrine disrupting chemicals disrupt the homeostasis of body metabolism. The present study elucidated that the low dose coexposure of thyroid disrupting dithiocarbamate fungicide mancozeb (MCZ) and neonicotinoid insecticide imidacloprid (IMI) during lactation increased the risk of body weight gain in mice later in life. Body weight gain has been linked to pesticide-induced hypothyroidism and hyperprolactinemia and alteration of lipid profiles. In vivo results were substantiated with In Silico molecular docking (MD) analysis that predicted the binding affinity of pesticides with thyroid hormone receptors (TRα and TRβ) and peroxisome proliferator activated receptor gamma (PPARγ), the major nuclear receptors of peripheral fat metabolism. Binding potency of MCZ and IMI was compared with that of T3, and its antagonist ethylene thiourea (ETU) as well as PPARγ agonist (Rosiglitazone) and antagonist (HL005). MD simulation predicted that both MCZ and IMI may compete with T3 for binding with TRs. Imidazole group of IMI formed hydrogen bonds with TRs like that of ETU. MCZ may compete with rosiglitazone and HL005 for PPARγ, but IMI showed no affinity. Thus while both MCZ and IMI could disrupt the TRs functioning, MCZ alone may affect PPARγ. Coexposure of pesticides decreased the plasma thyroid hormones and increased the cholesterol and triglyceride. Individual pesticide exposure in low dose might not exert the threshold response to affect the receptors signaling further to cause hormonal/metabolic impairment. Thus, cumulative response of the mixture of thyroid disrupting pesticides can disrupt metabolic regulation through several pathways and contribute to gain in body weight.
    General and Comparative Endocrinology 09/2014; 205. DOI:10.1016/j.ygcen.2014.02.007 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thyroperoxidase (TPO), the enzyme that catalyzes the synthesis of thyroid hormone, is a known target for thyroid-disrupting chemicals. In vivo toxicological evidence supporting TPO-inhibition as one molecular-initiating event that leads to thyroid disruption is derived largely from rat models; however, a significant fraction of research on the inhibition of TPO by xenobiotics has been conducted using porcine TPO. The current work tested the hypothesis that porcine and rat thyroid microsomes exposed to TPO-inhibiting chemicals would demonstrate different responses in a guaiacol oxidation assay. A primary objective of this work is to establish the degree of concordance between rat and porcine TPO inhibition data. Microsomes were isolated from both rat and pig thyroid glands, and the guaiacol oxidation assay was performed for a training set of 12 chemicals, including previously reported TPO inhibitors, thyroid-disrupting chemicals thought to perturb other targets, and several previously untested chemicals, to determine the relative TPO inhibition responses across species. Concentration-response curves were derived for methimazole (MMI), dibutylphthalate (DBP), diethylhexylphthalate (DEHP), diethylphthalate (DEP), 3,5-dimethylpyrazole-1-methanol (DPM), iopanoic acid (IOA), 2-mercaptobenzothiazole (MBT), sodium perchlorate (PERC), p-nonylphenol (PNP), 4-propoxyphenol (4POP), 6-propylthiouracil (PTU), and triclosan (TCS). MMI, PTU, MBT, DPM, 4POP, and at extremely high concentrations, PERC, inhibited TPO activity. Results demonstrated a strong qualitative concordance of response between the two species. All chemicals that inhibited TPO in porcine microsomes also inhibited TPO in rat microsomes. Hill model-derived IC50 values revealed approximate 1.5- to 50-fold differences in relative potency to MMI between species for positive chemicals. DPM, MBT, 4POP, and PTU exhibited greater relative potency to MMI using rat TPO versus porcine TPO, but rank order potency for inhibition was similar for the other test chemicals, with: PTU>MBT>DPM>4POP>PERC for rat TPO and MBT>PTU>DPM>4POP>PERC for porcine TPO. These data support the extrapolation of porcine TPO data to potential thyroid-disrupting activity in rodent models to evaluate TPO-inhibiting chemicals.
    Toxicology 08/2013; DOI:10.1016/j.tox.2013.08.006 · 3.75 Impact Factor