Differential Relative Sulfation of Keratan Sulfate Glycosaminoglycan in the Chick Cornea during Embryonic Development

Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom.
Investigative ophthalmology & visual science (Impact Factor: 3.66). 10/2009; 51(3):1365-72. DOI: 10.1167/iovs.09-4004
Source: PubMed

ABSTRACT To investigate structural remodeling of the developing corneal stroma concomitant with changing sulfation patterns of keratan sulfate (KS) glycosaminoglycan (GAG) epitopes during embryogenesis and the onset of corneal transparency.
Developing chick corneas were obtained from embryonic day (E)12 to E18 of incubation. Extracellular matrix composition and collagen fibril spacing were evaluated by synchrotron x-ray diffraction, hydroxyproline assay, ELISA (with antibodies against lesser and more highly sulfated KS), and transmission electron microscopy with specific proteoglycan staining.
A significant relative increase in highly sulfated KS epitope labeling occurred with respect to hydroxyproline content in the final week of chick development, as mean collagen interfibrillar distance decreased. Small KS PG filaments increased in frequency with development and were predominantly fibril associated.
The accumulation of highly sulfated KS during the E12 to E18 timeframe could serve to fine tune local matrix hydration and collagen fibril spacing during corneal growth, as gross dehydration and compaction of the stroma progress through the action of the nascent endothelial pump.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by the deficiency of lysosomal enzymes. The enzymes are required to break down glycosaminoglycans (GAGs) that help build bone, cartilage, tendons, corneas, skin and connective tissue. In patients with MPS, a missing enzyme leads to the accumulation of GAGs in the cells, blood, connective tissues, and multiple organs. The consequence is permanent, with progressive cellular damage affecting patients' appearance, physical abilities, organ and system function, and skeletal and mental development. The measurement of each specific GAG in a variety of specimens is required to establish the correlation between GAGs and physiological status of patients and/or prognosis and pathogenesis of the disease and to separate the patients with MPS from the healthy controls. We have developed a highly accurate, sensitive, and cost-effective liquid chromatography tandem mass spectrometry (LC-MS/MS) method for measurements of disaccharides derived from four specific GAGs [chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS)]. Disaccharides were produced by specific enzyme digestion of each GAG, and subsequently, quantified by negative ion mode of multiple reaction monitoring. Subclasses of GAGs with the same molecular weights can be separated by liquid chromatography. We have also developed another GAG assay by high-throughput mass spectrometry (HT-MS/MS). The HT-MS/MS consists of an integrated solid phase extraction robot that binds and de-salts samples from assay plates and directly injects them into a MS/MS detector, reducing sample processing time to within ten seconds. HT-MS/MS consequently yields much faster throughput than conventional LC-MS/MS-based methods; however, the HT-MS/MS system does not use a chromatographic step, and therefore, cannot separate GAGs that have the same molecular weights. Both techniques can be applied to the analysis of dried blood spots, blood, and urine specimens. In this review, we describe the assay methods for GAGs and the application to newborn screening and diagnosis of MPS.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Keratan sulphate (KS) is the predominant glycosaminoglycan (GAG) in the cornea of the eye, where it exists in proteoglycan (PG) form. KS-PGs have long been thought to play a pivotal role in the establishment and maintenance of the array of regularly-spaced and uniformly- thin collagen fibrils which make up the corneal stroma. This characteristic arrangement of fibrils allows light to pass through the cornea. Indeed, perturbations to the synthesis of KS-PG core proteins in genetically altered mice lead to structural matrix alterations and corneal opacification. Similarly, mutations in enzymes responsible for the sulphation of KS-GAG chains are causative for the inherited human disease, macular corneal dystrophy, which is manifested clinically by progressive corneal cloudiness starting in young adulthood.
    Cellular and Molecular Life Sciences CMLS 03/2010; 67(6):891-906. DOI:10.1007/s00018-009-0228-7 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biospectroscopy tools are increasingly being recognized as novel approaches toward interrogating complex biological structures in a nondestructive fashion. This study was conducted to apply these tools to interrogate alterations in the molecular signatures of developing chick corneas during the onset and development of transparency. Embryonic chick corneas (n = 46) were obtained at 2-day intervals from embryonic day (E)10 to E18 of incubation and investigated with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and Raman microspectroscopy. Resultant spectra were analyzed for variance by using principal component analysis and linear discriminant analysis (PCA-LDA). Mean spectra after ATR-FTIR spectroscopy or Raman microspectroscopy derived from corneas at each developmental stage showed some overlap; however, in PCA-LDA scores plots, a clear segregation of spectra was evident, and two-category discrimination indicated that significant molecular alterations occur during tissue morphogenesis. Notable by both techniques was the increasing intensity of DNA signal (1080 cm⁻¹) from E10 onward. Major segregating biomarkers identified by ATR-FTIR spectroscopy between E10 and E18 were in the DNA/RNA (1126 cm⁻¹), glycogen (1045 cm⁻¹), protein (1470 cm⁻¹), and amide II (1512 cm⁻¹ and 1524 cm⁻¹) spectral regions. Raman spectroscopy also identified major distinguishing vibrational modes that included proteins, amino acids (tyrosine, proline phenylalanine, and valine), and secondary structures of proteins (amide I and amide II). The developing chick cornea undergoes significant changes in its biomolecular composition in the E10 to E18 developmental period, with the major changes occurring in the spectral regions associated with DNA/RNA, proteins, glycogen, and secondary protein structures.
    Investigative ophthalmology & visual science 01/2012; 53(3):1162-8. DOI:10.1167/iovs.11-9262 · 3.66 Impact Factor
Show more