Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice.

Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Jilin Province, China.
The Journal of pharmacy and pharmacology 10/2009; 61(10):1375-82. DOI: 10.1211/jpp/61.10.0015
Source: PubMed

ABSTRACT The aim was to investigate the protective effect of salidroside isolated from Rhodiola sachalinensis A. Bor. (Crassulaceae) on D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.
Hepatotoxicity was induced by an intraperitoneal injection of D-galactosamine (700 mg/kg) and lipopolysaccharide (10 mug/kg); salidroside (20, 50 and 100 mg/kg) was administered intraperitoneally 1 h before induction of hepatoxicity. Liver injury was assessed biochemically and histologically.
Salidroside attenuated the induced acute increase in serum aspartate aminotransferase and alanine aminotransferase activities, and levels of tumour necrosis factor-alpha levels and serum nitric oxide. It restored depleted hepatic glutathione, superoxide dismutase, catalase and glutathione peroxidase activities, decreased malondialdehyde levels and considerably reduced histopathological changes. Histopathological, immunohistochemical and Western blot analyses also demonstrated that salidroside could reduce the appearance of necrotic regions and expression of caspase-3 and hypoxia-inducible factor-1alpha in liver tissue.
Salidroside protected liver tissue from the oxidative stress elicited by D-galactosamine and lipopolysaccharide. The hepatoprotective mechanism of salidroside appear to be related to antioxidant activity and inhibition of hypoxia-inducible factor-1alpha.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salidroside (SAL) is one of main active components of Rhodiola rosea L and possesses diverse pharmacological effects. However, the direct role of SAL in bone metabolism remains elusive. In this study, effects of SAL on osteoblast differentiation of murine pluripotent mesenchymal cell line C3H10T1/2 and osteoblastic cell line MC3T3-E1 were examined. We first identified SAL as a potential BMP2 activator in a cell-based screening assay. SAL (0.5-10 μM) could slightly promote the proliferation and greatly increase the alkaline phosphatase (ALP) activity in both cells. Furthermore, SAL increased the mRNA expressions of osteoblast marker genes in either C3H10T1/2 or MC3T3-E1 cells after treatment for different time. Moreover, the mineralization of C3H10T1/2 cells assayed by Alizarin Red S staining was dose-dependently increased by SAL. Mechanistically, SAL increased the mRNA level of genes involved in the regulation of BMP signaling pathway, including BMP2, BMP6 and BMP7, and enhanced the phosphorylation of Smad1/5/8 and ERK1/2. The osteogenic effect of SAL was abolished by BMP antagonist noggin or by BMP receptor kinase inhibitor dorsomorphin. Further in vivo study demonstrated that SAL reversed bone loss in ovariectomized rats. Collectively, our findings indicate that SAL regulates bone metabolism through BMP signaling pathway.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 09/2013; · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute hepatic failure (AHF), which leads to an extremely high mortality rate, has become the focus of attention in clinic. In this study, Danhong injection (DHI) was investigated to evaluate the preventive and protective effect on AHF induced by lipopolysaccharide (LPS) and D-galactosamine (GalN) in mice. For AHF induction, ICR mice were intraperitoneally injected with D-GalN (700 mg/kg) and LPS (20 μ g/kg). DHI was administrated twice, at 12 and 1 h, respectively, before D-GalN/LPS injection. After stimulation with D-GalN/LPS for 1 and 6 h, serum and livers were collected for analysis. We found that mice administrated with DHI displayed a higher survival rate, lower serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), glutathione S-transferase (GST), and tumor necrosis factor (TNF)- α . DHI inhibited the elevations of hepatic lipid peroxidation (malondialdehyde), caspase-8 activity, and mRNA expression levels of inflammatory cytokines (interleukin-1 β and interleukin-6) increased by D-GalN/LPS in the liver. Furthermore, liver histopathological analysis indicated that the DHI group showed markedly fewer apoptotic (TUNEL positive) cells and less pathological changes than those in the AHF model group. These results provide a novel insight into the pharmacological actions of DHI as a potential candidate for treating AHF.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:153902. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive activation of macrophages is implicated in various inflammatory injuries. Salidroside (Sal), one of the main bioactive components of Rhodiola Sachalinensis, has been reported to possess anti-inflammatory activities. This study aimed to examine the effect of Sal on the activation of macrophages and the possible mechanism. The lipopolysaccharide (LPS)-stimulated phrobol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophage models were established. The changes in the inflammatory profiles of THP-1-derived macrophages were determined. The results showed that Sal significantly decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in THP-1-derived macrophages, and the effect was dose-depedent. Moreover, NF-κB activation was significantly suppressed and the phosphorylation of ERK, p38 and JNK was substantially down-regulated after Sal treatment. The findings suggested that Sal can suppress the activation of LPS-stimulated PMA-differetiated THP-1 cells, as evidenced by the decreased expression of iNOS, COX2, IL-1β, IL-6 and TNF-α, and the mechanism involves the inhibition of NF-κB activation and the phosphorylation of the MAPK signal pathway.
    Journal of Huazhong University of Science and Technology 08/2013; 33(4):463-9. · 0.58 Impact Factor