Article

Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative β-catenin

Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
BMC Biology (Impact Factor: 7.43). 10/2009; 7(1):67. DOI: 10.1186/1741-7007-7-67
Source: PubMed

ABSTRACT Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.
Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.
RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.

0 Followers
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs.
    Experimental Biology and Medicine 10/2014; 240(5). DOI:10.1177/1535370214557220 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell therapies treating pathological muscle atrophy or damage requires an adequate quantity of muscle progenitor cells (MPCs) not currently attainable from adult donors. Here, we generate cultures of approximately 90% skeletal myogenic cells by treating human embryonic stem cells (ESCs) with the GSK3 inhibitor CHIR99021 followed by FGF2 and N2 supplements. Gene expression analysis identified progressive expression of mesoderm, somite, dermomyotome, and myotome markers, following patterns of embryonic myogenesis. CHIR99021 enhanced transcript levels of the pan-mesoderm gene T and paraxial-mesoderm genes MSGN1 and TBX6; immunofluorescence confirmed that 91% ± 6% of cells expressed T immediately following treatment. By 7 weeks, 47% ± 3% of cells were MYH(+ve) myocytes/myotubes surrounded by a 43% ± 4% population of PAX7(+ve) MPCs, indicating 90% of cells had achieved myogenic identity without any cell sorting. Treatment of mouse ESCs with these factors resulted in similar enhancements of myogenesis. These studies establish a foundation for serum-free and chemically defined monolayer skeletal myogenesis of ESCs.
    Stem Cell Reports 09/2014; 3(3):516-29. DOI:10.1016/j.stemcr.2014.07.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of transforming growth factor-beta (TGFβ) are mediated by the transcription factors Smad2 and Smad3. During adult skeletal myogenesis, TGFβ signaling inhibits the differentiation of myoblasts, and this can be reversed by treatment with retinoic acid (RA). In mesenchymal stem cells and preadipocytes, RA treatment can function in a non-classical manner by stimulating the expression of Smad3. Smad3 can bind to and prevent the bzip transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) from binding DNA response elements in target promoters, thereby affecting cell differentiation. In skeletal muscle, C/EBPβ is highly expressed in satellite cells and myoblasts and is downregulated during differentiation. Persistent expression of C/EBPβ in myoblasts inhibits their differentiation. Using both C2C12 myoblasts and primary myoblasts, we examined the regulation of C/EBPβ expression and activity following treatment with TGFβ and RA. We demonstrate that treatment with RA upregulates Smad3, but not Smad2 expression in myoblasts, and can partially rescue the block of differentiation induced by TGFβ. RA treatment reduces C/EBPβ occupancy of the Pax7 and Smad2 promoters and decreased their expression. RA also inhibits the TGFβ-mediated phosphorylation of Smad2, which may also contribute to its pro-myogenic activities. TGFβ treatment of C2C12 myoblasts stimulates C/EBPβ expression, which in turn can stimulate Pax7 and Smad2 expression, and inhibits myogenesis. Loss of C/EBPβ expression in myoblasts partially restores differentiation in the presence of TGFβ. TGFβ acts, at least in part, to inhibit myogenesis by upregulating the expression of C/EBPβ, as treatment with RA or loss of C/EBPβ can partially rescue differentiation in TGFβ-treated cells. This work identifies a pro-myogenic role for Smad3, through the inhibition of C/EBPβ's actions in myoblasts, and reveals mechanisms of crosstalk between RA and TGFβ signaling pathways.
    03/2015; 5(1):8. DOI:10.1186/s13395-015-0032-z