Article

Depressed antioxidant status in pregnant women on iron supplements: pathologic and clinical correlates.

Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
Biological trace element research (Impact Factor: 1.92). 10/2009; 136(2):157-70. DOI: 10.1007/s12011-009-8534-3
Source: PubMed

ABSTRACT Iron (Fe) remains a commonly prescribed supplement in pregnancy. Its possible pathologic potential is either uncommonly considered or ignored. We determined the antioxidant status in pregnant women with and without Fe supplements. Fifty-eight apparently healthy pregnant women on Fe supplements were selected for the study from the antenatal clinic of the University College Hospital, Ibadan, Nigeria. Fifty-five aged matched pregnant women who were not on Fe from various parishes of the Christ Apostolic Church, Ibadan (non-drug using Christian sect) were randomly selected as controls. Both groups were classified according to the trimesters of pregnancy. The gestational age in both pregnant women on Fe supplements and non-supplement pregnant women was similar. Fruit and vegetables consumption was higher in the supplement than in the non-supplement group (57.2% vs. 37.3%). Anthropometric indices, weight, height, and BMI, were also similar. But while the weight of the Fe supplement group decreased by nearly 3% in the third trimester, it increased by over 10% (p < 0.00) in the non-supplement group in the same period. Serum Fe level was significantly higher in the supplement than the non-supplement group (p < 0.001). In contrast, the levels of the antioxidants, ascorbic acid, copper (Cu), zinc (Zn), and bilirubin were all significantly decreased (p < 0.05, p < 0.001, p < 0.05, and p < 0.05, respectively). Uric acid level though also lower in the supplement group did not reach statistical significance (p > 0.05), while vitamin E was similar in both groups. There was relative stability of all antioxidants except uric acid, which declined from the first to the last trimester in the non-supplement group. The significantly higher Fe level in the second trimester was sustained in the third trimester though to a lesser degree (p < 0.05) and associated with significant decreases in the following antioxidant levels in the supplement group, ascorbic acid, bilirubin, Cu, and Zn (p < 0.02, p < 0.02, p < 0.02, and p < 0.001, respectively). Uric acid and vitamin E though lower in the supplement group were not significantly different. Remarkably, percentage changes between the first and third trimesters revealed that serum Fe increased by over 116% in the Fe supplement group, while it only increased by over 50% in the non-supplement group. This was associated with 23.50% decrease in ascorbate level (p < 0.003) in the supplement group, while it decreased by only 3.70% in the non-supplement group (p > 0.05). Again vitamin E decreased by 17.22% in the supplement group, while it decreased by only 7.30% in the non-supplement group during the period. Uric acid and bilirubin levels decreased by similar proportions during the period, while Zn decreased by 18.55% in the supplement group and by 14.86% in the non-supplement group. In contrast Cu increased by 7.20% in the supplement group, while it increased by only 2.96 in the non-supplement group. Additionally, all the antioxidants in the supplement group except vitamin E, viz, ascorbic acid, bilirubin, Cu, uric acid, and Zn, were significantly inversely correlated with serum Fe level (r - 0.299, p < 0.05, r - 0.278, p < 0.05, r - 0.383, p < 0.05, and r - 0.0369, p < 0.05). These data imply markedly depressed antioxidant status in the Fe supplement pregnant group with attendant oxidative stress (most probably pro-oxidant Fe-induced). This is associated with molecular and cellular damage as well as a number of pathologic and clinical correlates that underlie the exacerbation of morbidity and mortality in maternal and child populations, particularly in the developing countries. This appears to call for serious caution and prior evaluation of antioxidant and Fe status and during the use of Fe supplements in pregnancy for monitoring and prognostic purposes and to avert or ameliorate oxidative stress-induced pathologies in maternal and fetal systems.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE) and non-proteinuric new hypertension (gestational hypertension; GH) are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks postpartum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS) and antioxidants (ferric ion reducing ability of plasma; FRAP). Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential) hypertension (EH) without PE. Limited data were available from normotensive pregnancies (n = 7) and non-pregnant controls (n = 14). There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P = 0.001) and FRAP (P = 0.009) were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P = 0.013). In PE and GH, TBARS correlated with low density lipoprotein (LDL)-cholesterol (P = 0.036); this association strengthened with inclusion of EH (P = 0.011). The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P = 0.003). Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre-existing cardiovascular risk.
    Frontiers in Physiology 08/2014; 5:310. DOI:10.3389/fphys.2014.00310
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The research field of fetal programming has developed tremendously over the years and increasing knowledge suggests that both maternal and paternal unbalanced diet can have long-lasting effects on the health of offspring. Studies implicate that macronutrients play an important role in fetal programming, although the importance of micronutrients is also becoming increasingly apparent. Folic acid and vitamins B2, B6 and B12 are essential for one-carbon metabolism and are involved in DNA methylation. They can therefore influence the programming of the offspring's epigenome. Also, other micronutrients such as vitamins A and C, iron, chromium, zinc and flavonoids play a role in fetal programming. Since it is estimated that approximately 78 % of pregnant women in the US take vitamin supplements during pregnancy, more attention should be given to the long-term effects of these supplements on offspring. In this review we address several different studies which illustrate that an unbalanced diet prior and during pregnancy, regarding the intake of micronutrients of both mother and father, can have long-lasting effects on the health of adult offspring.
    Cellular and Molecular Life Sciences CMLS 07/2013; DOI:10.1007/s00018-013-1427-9 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Objective: Iron supplementation was found to be a cause of oxidative stress. The aim of this study was to compare oxidative stress in pregnancies with and without iron supplementation in the first trimester pregnancies. Methods: One hundred and eight women in the first trimester of normal pregnancies were randomly assigned to three groups. Patients were grouped as following: group 1 received placebo (n=36), group 2 received folate supplementation (n=36) and group 3 was directed to administer the medication of the iron supplementation (n=36). Oxidative stress was assesed at 14 th weeks of gestation by the utilization of serum γ- glutamyl transferase level. Pregnancies were followed until delivery. Relationship between the oxidative stress and pregnancy outcome was assessed among groups. Results: Mean age was similar among groups, mean gravidity and parity were significantly lower in group with Fe supplementation (p < 0.05). Maternal weight and weight gain during pregnancy were also significantly lower in Group 3 (p < 0.05). Mean serum albumin levels were similar among groups while serum γ- glutamyl transferase (GGT) levels were significantly higher in Group 3. There were 10 cases of oligohydramnios in Group 3, 2 cases in Group 2 and no cases in Group 1 (p < 0.001). Conclusion: Iron supplementation during first trimester pregnancy was found to be associated with an increased oxidative stress.
    The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians 11/2013; 27(15). DOI:10.3109/14767058.2013.863869 · 1.36 Impact Factor