Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding

Department of New Materials and Biosystems, Max Planck Institute for Metals Research, 70569 Stuttgart, Germany.
Journal of Cell Science (Impact Factor: 5.33). 10/2009; 122(Pt 20):3644-51. DOI: 10.1242/jcs.054866
Source: PubMed

ABSTRACT Mechanical forces play a crucial role in controlling the integrity and functionality of cells and tissues. External forces are sensed by cells and translated into signals that induce various responses. To increase the detailed understanding of these processes, we investigated cell migration and dynamic cellular reorganisation of focal adhesions and cytoskeleton upon application of cyclic stretching forces. Of particular interest was the role of microtubules and GTPase activation in the course of mechanotransduction. We showed that focal adhesions and the actin cytoskeleton undergo dramatic reorganisation perpendicular to the direction of stretching forces even without microtubules. Rather, we found that microtubule orientation is controlled by the actin cytoskeleton. Using biochemical assays and fluorescence resonance energy transfer (FRET) measurements, we revealed that Rac1 and Cdc42 activities did not change upon stretching, whereas overall RhoA activity increased dramatically, but independently of intact microtubules. In conclusion, we demonstrated that key players in force-induced cellular reorganisation are focal-adhesion sliding, RhoA activation and the actomyosin machinery. In contrast to the importance of microtubules in migration, the force-induced cellular reorganisation, including focal-adhesion sliding, is independent of a dynamic microtubule network. Consequently, the elementary molecular mechanism of cellular reorganisation during migration is different to the one in force-induced cell reorganisation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo, cells are exposed to mechanical forces in many different ways. These forces can strongly influence cell functions or may even lead to diseases. Through their sensing machinery, cells are able to perceive the physical information of the extracellular matrix and translate it into biochemical signals resulting in cellular responses. Here, by virtue of two-component polymer scaffolds made via direct laser writing, we precisely control the cell matrix adhesions regarding their spatial arrangement and size. This leads to highly controlled and uniform cell morphologies, thereby allowing for averaging over the results obtained from several different individual cells, enabling quantitative analysis. We transiently deform these elastic structures by a micromanipulator, which exerts controlled stretching forces on primary fibroblasts grown in these scaffolds on a subcellular level. We find stretch-induced remodeling of both actin cytoskeleton and cell matrix adhesions. The responses to static and periodic stretching are significantly different. The amount of paxillin and phosphorylated focal adhesion kinase increases in cell matrix adhesions at the manipulated pillar after static stretching whereas it decreases after periodic stretching.
    Biomaterials 01/2015; 44:186-194. DOI:10.1016/j.biomaterials.2014.12.018 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiology of vascular cells depends on stimulating mechanical forces caused by pulsatile flow. Thus, mechano-transduction processes and responses of primary human endothelial cells (ECs) and smooth muscle cells (SMCs) have been studied to reveal cell-type specific differences which may contribute to vascular tissue integrity. Here, we investigate the dynamic reorientation response of ECs and SMCs cultured on elastic membranes over a range of stretch frequencies from 0.01 to 1 Hz. ECs and SMCs show different cell shape adaptation responses (reorientation) dependent on the frequency. ECs reveal a specific threshold frequency (0.01 Hz) below which no responses is detectable while the threshold frequency for SMCs could not be determined and is speculated to be above 1 Hz. Interestingly, the reorganization of the actin cytoskeleton and focal adhesions system, as well as changes in the focal adhesion area, can be observed for both cell types and is dependent on the frequency. RhoA and Rac1 activities are increased for ECs but not for SMCs upon application of a uniaxial cyclic tensile strain. Analysis of membrane protrusions revealed that the spatial protrusion activity of ECs and SMCs is independent of the application of a uniaxial cyclic tensile strain of 1 Hz while the total number of protrusions is increased for ECs only. Our study indicates differences in the reorientation response and the reaction times of the two cell types in dependence of the stretching frequency, with matching data for actin cytoskeleton, focal adhesion realignment, RhoA/Rac1 activities, and membrane protrusion activity. These are promising results which may allow cell-type specific activation of vascular cells by frequency-selective mechanical stretching. This specific activation of different vascular cell types might be helpful in improving strategies in regenerative medicine. © 2015 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 02/2015; DOI:10.1177/1535370215570191 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the shapes of organisms are encoded in their genome, the developmental processes that lead to the final form of vertebrates involve a constant feedback between dynamic mechanical forces, and cell growth and motility. Mechanobiology has emerged as a discipline dedicated to the study of the effects of mechanical forces and geometry on cell growth and motility - for example, during cell-matrix adhesion development - through the signalling process of mechanotransduction.
    Nature Reviews Molecular Cell Biology 10/2014; 15(12). DOI:10.1038/nrm3903 · 37.16 Impact Factor


Available from
May 29, 2014