Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding

Department of New Materials and Biosystems, Max Planck Institute for Metals Research, 70569 Stuttgart, Germany.
Journal of Cell Science (Impact Factor: 5.33). 10/2009; 122(Pt 20):3644-51. DOI: 10.1242/jcs.054866
Source: PubMed

ABSTRACT Mechanical forces play a crucial role in controlling the integrity and functionality of cells and tissues. External forces are sensed by cells and translated into signals that induce various responses. To increase the detailed understanding of these processes, we investigated cell migration and dynamic cellular reorganisation of focal adhesions and cytoskeleton upon application of cyclic stretching forces. Of particular interest was the role of microtubules and GTPase activation in the course of mechanotransduction. We showed that focal adhesions and the actin cytoskeleton undergo dramatic reorganisation perpendicular to the direction of stretching forces even without microtubules. Rather, we found that microtubule orientation is controlled by the actin cytoskeleton. Using biochemical assays and fluorescence resonance energy transfer (FRET) measurements, we revealed that Rac1 and Cdc42 activities did not change upon stretching, whereas overall RhoA activity increased dramatically, but independently of intact microtubules. In conclusion, we demonstrated that key players in force-induced cellular reorganisation are focal-adhesion sliding, RhoA activation and the actomyosin machinery. In contrast to the importance of microtubules in migration, the force-induced cellular reorganisation, including focal-adhesion sliding, is independent of a dynamic microtubule network. Consequently, the elementary molecular mechanism of cellular reorganisation during migration is different to the one in force-induced cell reorganisation.

Download full-text


Available from: Christoph Ballestrem, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A multi-layered polydimethylsiloxane microfluidic device with an integrated suspended membrane has been fabricated that allows dynamic and multi-axial mechanical deformation and simultaneous live-cell microscopy imaging. The transparent membrane’s strain field can be controlled independently along two orthogonal directions. Human foreskin fibroblasts were immobilized on the membrane’s surface and stretched along two orthogonal directions sequentially while performing live-cell imaging. Cyclic deformation of the cells induced a reversible reorientation perpendicular to the direction of the applied strain. Cells remained viable in the microdevice for several days. As opposed to existing microfluidic or macroscale stretching devices, this device can impose changing, anisotropic and time-varying strain fields in order to more closely mimic the complexities of strains occurring in vivo. Electronic supplementary material The online version of this article (doi:10.1007/s10529-013-1381-5) contains supplementary material, which is available to authorized users.
    Biotechnology Letters 12/2013; DOI:10.1007/s10529-013-1381-5 · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100-μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions.
    Biomechanics and Modeling in Mechanobiology 03/2012; DOI:10.1007/s10237-012-0384-9 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical forces play important roles in the regulation of cellular functions, including polarization, migration and stem cell differentiation. Tremendous advancement in our understanding of mechanotransduction has been achieved with the recent development of imaging technologies and molecular biosensors. In particular, genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) technology have been widely developed and applied in the field of mechanobiology. In this article, we will provide an overview of the recent progress of FRET application in mechanobiology, specifically mechanotransduction. We first introduce fluorescent proteins and FRET technology. We then discuss the mechanotransduction processes in different cells including stem cells, with a special emphasis on the important signalling molecules involved in mechanotransduction. Finally, we discuss methods that can allow the integration of simultaneous FRET imaging and mechanical stimulation to trigger signalling transduction. In summary, FRET technology has provided a powerful tool for the study of mechanotransduction to advance our systematic understanding of the molecular mechanisms by which cells respond to mechanical stimulation.
    Journal of The Royal Society Interface 03/2010; 7 Suppl 3:S365-75. DOI:10.1098/rsif.2010.0042.focus · 3.86 Impact Factor