Article

Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process.

Department of Materials Science and Engineering, Seoul National University, San 56-1 Shillim-dong, Gwanak-gu, Seoul 151-744, Korea.
Langmuir (Impact Factor: 4.38). 10/2009; 26(1):384-8. DOI: 10.1021/la902157z
Source: PubMed

ABSTRACT The noble synthesis method for hydroxyapatite (HAp) nanoparticles was exploited using a fairly simple reaction of Ca(OH)(2) and H(3)PO(4), which does not generate residual harmful anions and consequently does not need an additional washing process. HAp nanoparticles were found to yield from dicalcium phosphate dehydrate (DCPD) as the only intermediate phase, which was monitored by in situ observation study using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), (1)H and (31)P magic-angle spinning (MAS) NMR. Furthermore, we found that the phase evolution of HAp was preceded by heteronucleation of HAp onto the DCPD surface. The combination of scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-ES) analysis gave more information on the HAp crystallization process, which was found to be retarded by the residual Ca(OH)(2) and slow diffusion process of Ca ions into the interface between HAp and DCPD. These results demonstrate that the synthesis of pure HAp nanoparticles with high throughput can be achieved by controlling the residual Ca(OH)(2) and diffusion process of Ca ions.

1 Bookmark
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NPs) were prepared from succinylated gelatin (s-GL) cross-linked with aldehyde heparin (a-HEP) and used subsequently as a nano-template for the mineralization of hydroxyapatite (HAP). Gelatin was functionalized with succinyl groups that made it soluble at room temperature. Heparin was oxidized to generate aldehyde groups and then used as a cross-linker that can react with s-GL to form NPs via Schiff's base linkage. The polymer concentrations, feed molar ratios and pH conditions were varied to fabricate NPs suspension. NPs were obtained with a spheroid shape of an average size of 196 nm at pH 2.5 and 202 nm at pH 7.4. These NPs had a positive zeta potential of 7.3 ± 3.0 mV and a narrow distribution with PDI 0.123 at pH 2.5, while they had a negative zeta potential of -2.6 ± 0.3 mV and formed aggregates (PDI 0.257) at pH 7.4. The NPs prepared at pH 2.5 with a mean particle size of 196 nm were further used for mineralization studies. The mineralization process was mediated by solution without calcination at 37 °C. The HAP formed on NPs was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. HAP coated s-GL/a-HEP NPs developed in this study may be used in future as osteoinductive fillers enhancing the mechanical properties of injectable hydrogel or use as potential multifunctional device for nanotherapeutic approaches.
    Journal of Materials Science Materials in Medicine 12/2013; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxyapatite (HAp) is the major mineral constituent of vertebrate bones and teeth. It has been well documented that HAp nanoparticles can significantly increase the biocompatibility and bioactivity of man-made biomaterials. Over the past decade, HAp nanoparticles have therefore increasingly been in demand, and extensive efforts have been devoted to develop many synthetic routes, involving both scientifically and economically new features. Several investigations have also been made to determine how critical properties of HAp can be effectively controlled by varying the processing parameters. With such a wide variety of methods for the preparation of HAp nanoparticles, choosing a specific procedure to synthesize a well-defined powder can be laborious; accordingly, in the present review, we have summarized all the available information on the preparation methodologies of HAp, and highlighted the inherent advantages and disadvantages involved in each method. This article is focused on nanosized HAp, although recent articles on microsized particles, especially those assembled from nanoparticles and/or nanocrystals, have also been reviewed for comparison. We have also provided several scientific figures and discussed a number of critical issues and challenges which require further research and development.
    Acta Biomaterialia 08/2013; 9(8):7591–7621. · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis of calcium hydroxyapatite powder (Ca-HA) from orthophosphoric acid or from potassium dihydrogen orthophosphate and calcium carbonate was carried out under moderate conditions. A better dissolution of calcium carbonate and a complete precipitation of the orthophosphate species were obtained with orthophosphoric acid, indicating that it may be of interest as a phosphate source compared with potassium dihydrogen orthophosphate. The influence of calcination treatment on the physico-chemical properties of the solids is discussed in this paper. Different characterization techniques such as specific surface area (S BET), true density, particle size distribution, thermo-mechanical analysis, simultaneous thermogravimetry and differential scanning calorimetry analysis, X-ray diffraction and infrared were performed to understand the phase changes during thermal treatment. Specific surface area decreased while true density and particle size increased with the rise in the calcination temperature, due to the sintering of particles and the chemical reactions occurring at high temperatures. Mixtures of well-crystallized Ca-HA and tricalcium phosphate (TCP) or well-crystallized Ca-HA, CaO, and TCP were obtained after calcination at 800–1,000 °C of the solid products starting from orthophosphoric acid or potassium dihydrogen orthophosphate, respectively.
    Journal of Thermal Analysis and Calorimetry 06/2012; 112(3). · 1.98 Impact Factor