Article

Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance

Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
Diabetes (Impact Factor: 8.47). 10/2009; 59(1):6-16. DOI: 10.2337/db09-0755
Source: PubMed

ABSTRACT To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes.
Male Grp78(+/-) mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-euglycemic clamps. Molecular mechanism was explored via immunoblotting and tissue culture manipulation.
Grp78 heterozygosity increases energy expenditure and attenuates HFD-induced obesity. Grp78(+/-) mice are resistant to diet-induced hyperinsulinemia, liver steatosis, white adipose tissue (WAT) inflammation, and hyperglycemia. Hyperinsulinemic-euglycemic clamp studies revealed that Grp78 heterozygosity improves glucose metabolism independent of adiposity and following an HFD increases insulin sensitivity predominantly in WAT. As mechanistic explanations, Grp78 heterozygosity in WAT under HFD stress promotes adaptive unfolded protein response (UPR), attenuates translational block, and upregulates ER degradation-enhancing alpha-mannosidase-like protein (EDEM) and ER chaperones, thus improving ER quality control and folding capacity. Further, overexpression of the active form of ATF6 induces protective UPR and improves insulin signaling upon ER stress.
HFD-induced obesity and type 2 diabetes are improved in Grp78(+/-) mice. Adaptive UPR in WAT could contribute to this improvement, linking ER homeostasis to energy balance and glucose metabolism.

Download full-text

Full-text

Available from: Jason K Kim, Sep 01, 2015
0 Followers
 · 
129 Views
 · 
33 Downloads
  • Source
    • "Several genetic strategies have been applied to tease out the roles of ER stress and chaperones in liver steatosis. The ER chaperone protein GRP78 is a critical regulator of ER homeostasis and stress responses, because it interacts and sequesters all major UPR sensors (Ye et al., 2010; Pfaffenbach and Lee, 2011). Kammoun et al. (2009) found that overexpression of GRP78 inhibited ER stress-induced sterol regulatory element binding protein (SREBP) expression and steatosis in the livers of obese (ob/ob) mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As an adaptive response to the overloading with misfolded proteins in the endoplasmic reticulum (ER), ER stress plays critical roles in maintaining protein homeostasis in the secretory pathway to avoid damage to the host. Such a conserved mechanism is accomplished through three well-orchestrated pathways known collectively as unfolded protein response (UPR). Persistent and pathological ER stress has been implicated in a variety of diseases in metabolic, inflammatory, and malignant conditions. Furthermore, ER stress is directly linked with inflammation through UPR pathways, which modulate transcriptional programs to induce the expression of inflammatory genes. Importantly, the inflammation induced by ER stress is directly responsible for the pathogenesis of metabolic and inflammatory diseases. In this review, we will discuss the potential signaling pathways connecting ER stress with inflammation. We will also depict the interplay between ER stress and inflammation in the pathogenesis of hepatic steatosis, inflammatory bowel diseases and colitis-associated colon cancer.
    Frontiers in Genetics 07/2014; 5:242. DOI:10.3389/fgene.2014.00242
  • Source
    • "Our study confirmed the existence of glucotoxic effects on INS-1 cell survival and secretory function and also demonstrated that the deleterious effects of high glucose were additive to those of PSCs. One important mechanism of β-cell failure in T2DM is the development of ER stress as a response to an imbalance between the rate of protein synthesis and folding capacity of the endoplasmic reticulum in hypersecreting β-cells, eventually resulting in β-cell apoptosis [37, 38]. Our measurements of increased CHOP mRNA and protein levels in response to PSCs-CM and/or high glucose suggest that the detrimental effects of PSCs on β-cells may be associated with the activation of the ER stress response. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aims. We here assess the effects of PSCs on β-cell function and apoptosis in vivo and in vitro. Materials and Methods. PSCs were transplanted into Wistar and Goto-Kakizaki (GK) rats. Sixteen weeks after transplantation, β-cell function, apoptosis, and islet fibrosis were assessed. In vitro the effects of PSCs conditioned medium (PSCs-CM) and/or high concentration of glucose on INS-1 cell function was assessed by measuring insulin secretion, INS-1 cell survival, apoptosis, and endoplasmic reticulum stress (ER stress) associated CHOP expression. Results. PSCs transplantation exacerbated the impaired β-cell function in GK rats, but had no significant effects in Wistar rats. In vitro, PSCs-CM caused impaired INS-1 cell viability and insulin secretion and increased apoptosis, which were more pronounced in the presence of high glucose. Conclusion. Our study demonstrates that PSCs induce β-cell failure in vitro and in vivo.
    International Journal of Endocrinology 07/2014; 2014:165612. DOI:10.1155/2014/165612 · 1.52 Impact Factor
  • Source
    • "CHGA(−/−) mice also display improved glycemia with enhanced insulin sensitivity in vivo [23]. The observation that activation of the adaptive UPR leads to enhanced insulin sensitivity with decreased obesity has been described previously [40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The chromogranin A-derived peptide pancreastatin (PST) is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide) as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP) as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones), involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR") in CHGA(-/-) mice compared to wild-type (+/+). By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/-) mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM). PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin) in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis). In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP) increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion), but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic response to UPR activation. PST decreases insulin-stimulated cellular glucose uptake, and PST as well as other chaperone ATPase activity inhibitors augment expression of G6Pase; GRP78 over-expression antagonizes this PST action. Analysis of the novel PST/GRP78 interaction may provide a new avenue of investigation into cellular glycemic control as well as dysglycemia.
    PLoS ONE 01/2014; 9(1):e84132. DOI:10.1371/journal.pone.0084132 · 3.23 Impact Factor
Show more