Article

BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken.

Department of Molecular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2009; 106(39):16740-5. DOI: 10.1073/pnas.0906776106
Source: PubMed

ABSTRACT Pathogen selection is postulated to drive MHC allelic diversity at loci for antigen presentation. However, readily apparent MHC infectious disease associations are rare in most species. The strong link between MHC-B haplotype and the occurrence of virally induced tumors in the chicken provides a means for defining the relationship between pathogen selection and MHC polymorphism. Here, we verified a significant difference in resistance to gallid herpesvirus-2 (GaHV-2)-induced lymphomas (Marek's disease) conferred by two closely-related recombinant MHC-B haplotypes. We mapped the crossover breakpoints that distinguish these haplotypes to the highly polymorphic BG1 locus. BG1 encodes an Ig-superfamily type I transmembrane receptor-like protein that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), which undergoes phosphorylation and is recognized by Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2). The recombinant haplotypes are identical, except for differences within the BG1 3'-untranslated region (3'-UTR). The 3'-UTR of the BG1 allele associated with increased lymphoma contains a 225-bp insert of retroviral origin and showed greater inhibition of luciferase reporter gene translation compared to the other allele. These findings suggest that BG1 could affect the outcome of GaHV-2 infection through modulation of the lymphoid cell responsiveness to infection, a condition that is critical for GaHV-2 replication and in which the MHC-B haplotype has been previously implicated. This work provides a mechanism by which MHC-B region genetics contributes to the incidence of GaHV-2-induced malignant lymphoma in the chicken and invites consideration of the possibility that similar mechanisms might affect the incidence of lymphomas associated with other oncogenic viral infections.

0 Bookmarks
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins at the cell surface and within the endocytic pathway are increasingly being recognized for their roles in a wide variety of intercellular interactions. Here we used the inherent hydrophobicity and N-glycosylation of membrane proteins to enrich these proteins from the surface and endosome of avian LMH epithelial cells for mass spectrometric analysis. The cycling of many different types of proteins from the cell surface into the endosome and sometimes back to the surface again makes it appropriate to analyze these two membranous cellular components together. Stringent searches of the International Protein Index (IPI) entries for Gallus gallus identified 318 unique integral membrane proteins (IMPs) (201 bearing N-glycosylation sites), 265 unique membrane-associated proteins (MAPs), and an additional group of 784 non-membrane proteins (NMPs) among TX-114 detergent and aqueous phase-enriched proteins. Capture of N-glycosylated tryptic peptides revealed 36 additional glycoproteins most of which were CD antigens, receptors, and molecules for cell adhesion and immune response. IMPs and MAPs present at the surface and within the endosome included proteins involved in transport (255), metabolism (285), communication (108), adhesion (47), and immune responses (42). Among these were 355 putative uncharacterized and hypothetical IMPs, MAPs, and NMPs for which highly similar annotated sequences were found in standard protein-protein BLAST searches.
    Journal of Proteome Research 08/2011; 10(9):3973-82. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chicken major histocompatibility complex (MHC) is located on the microchromosome 16 and is described as the most variable region in the genome. The genes of the MHC play a central role in the immune system. Particularly, genes encoding proteins involved in the antigen presentation to T cells. Therefore, describing the genetic polymorphism of this region is crucial in understanding host-pathogen interactions. The tandem repeat LEI0258 is located within the core area of the B region of the chicken MHC (MHC-B region) and its genotypes correlate with serology. This marker was used to provide a picture of the worldwide diversity of the chicken MHC-B region and to categorize chicken MHC haplotypes. More than 1,600 animals from 80 different populations or lines of chickens from Africa, Asia, and Europe, including wild fowl species, were genotyped at the LEI0258 locus. Fifty novel alleles were described after sequencing. The resulting 79 alleles were classified into 12 clusters, based on the SNPs and indels found within the sequences flanking the repeats. Furthermore, hypotheses were formulated on the evolutionary dynamics of the region. This study constitutes the largest variability report for the chicken MHC and establishes a framework for future diversity or association studies.
    Immunogenetics 03/2013; · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.
    PLoS Genetics 06/2014; 10(6):e1004417. · 8.52 Impact Factor

Full-text (2 Sources)

View
33 Downloads
Available from
May 23, 2014