Article

The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy.

Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2009; 106(40):17049-54. DOI: 10.1073/pnas.0903316106
Source: PubMed

ABSTRACT Macroautophagy (or autophagy) is a conserved degradative pathway that has been implicated in a number of biological processes, including organismal aging, innate immunity, and the progression of human cancers. This pathway was initially identified as a cellular response to nutrient deprivation and is essential for cell survival during these periods of starvation. Autophagy is highly regulated and is under the control of a number of signaling pathways, including the Tor pathway, that coordinate cell growth with nutrient availability. These pathways appear to target a complex of proteins that contains the Atg1 protein kinase. The data here show that autophagy in Saccharomyces cerevisiae is also controlled by the cAMP-dependent protein kinase (PKA) pathway. Elevated levels of PKA activity inhibited autophagy and inactivation of the PKA pathway was sufficient to induce a robust autophagy response. We show that in addition to Atg1, PKA directly phosphorylates Atg13, a conserved regulator of Atg1 kinase activity. This phosphorylation regulates Atg13 localization to the preautophagosomal structure, the nucleation site from which autophagy pathway transport intermediates are formed. Atg13 is also phosphorylated in a Tor-dependent manner, but these modifications appear to occur at positions distinct from the PKA phosphorylation sites identified here. In all, our data indicate that the PKA and Tor pathways function independently to control autophagy in S. cerevisiae, and that the Atg1/Atg13 kinase complex is a key site of signal integration within this degradative pathway.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification while protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1 and Ykl126w/Ypk1, which co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinases PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared to a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in Saccharomyces cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of Saccharomyces cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    The Journal of biological chemistry. 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is activated in ischemic heart diseases, but its dynamics and functional roles remain unclear and controversial. In this study, we investigated the dynamics and role of autophagy and the mechanism(s), if any, during postinfarction cardiac remodeling. Acute myocardial infarction (AMI) was induced by ligating left anterior descending (LAD) coronary artery. Autophagy was found to be induced sharply 12-24 hours after surgery by testing LC3 modification and Electron microscopy. P62 degradation in the infarct border zone was increased from day 0.5 to day 3, and however, decreased from day 5 until day 21 after LAD ligation. These results indicated that autophagy was induced in the acute phase of AMI, and however, impaired in the latter phase of AMI. To investigate the significance of the impaired autophagy in the latter phase of AMI, we treated the mice with Rapamycin (an autophagy enhancer, 2.0 mg/kg/day) or 3-methyladenine (3MA, an autophagy inhibitor, 15 mg/kg/day) one day after LAD ligation until the end of experiment. The results showed that Rapamycin attenuated, while 3MA exacerbated, postinfarction cardiac remodeling and dysfunction respectively. In addition, Rapamycin protected the H9C2 cells against oxygen glucose deprivation in vitro. Specifically, we found that Rapamycin attenuated NFκB activation after LAD ligation. And the inflammatory response in the acute stage of AMI was significantly restrained with Rapamycin treatment. In vitro, inhibition of NFκB restored autophagy in a negative reflex. Sustained myocardial ischemia impairs cardiomyocyte autophagy, which is an essential mechanism that protects against adverse cardiac remodeling. Augmenting autophagy could be a therapeutic strategy for acute myocardial infarction.
    PLoS ONE 11/2014; 9(11):e112891. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic factors underlying aging are remarkably conserved from yeast to human. The fission yeast Schizosaccharomyces pombe is an emerging genetic model to analyze cellular aging. Chronological lifespan (CLS) has been studied in stationary-phase yeast cells depleted for glucose, which only survive for a few days. Here we analysed CLS in quiescent S. pombe cells deprived of nitrogen, which arrest in a differentiated, G0-like state and survive for over 2 months. We applied parallel mutant phenotyping by barcode sequencing (Bar-seq) to assay pooled haploid deletion mutants, as they aged together during long-term quiescence. As expected, mutants with defects in autophagy or quiescence were under-represented or not detected. Lifespan scores could be calculated for 1199 mutants. We focus the discussion on the 48 most long-lived mutants, including both known aging genes in other model systems and genes not previously implicated in aging. Genes encoding membrane proteins were particularly prominent as pro-aging factors. We independently verified the extended CLS in individual assays for 30 selected mutants, showing the efficacy of the screen. We also applied Bar-seq to profile all pooled deletion mutants for proliferation under a standard growth condition. Unlike for stationary-phase cells, no inverse correlation between growth and CLS of quiescent cells was evident. These screens provide a rich resource for further studies, and they suggest that the quiescence model can provide unique, complementary insights into cellular aging. Copyright © 2014 Author et al.
    G3-Genes Genomes Genetics 12/2014; · 2.51 Impact Factor

Preview

Download
0 Downloads
Available from