Article

Engineering splicing factors with designed specificities.

Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Nature Methods (Impact Factor: 25.95). 10/2009; 6(11):825-30. DOI: 10.1038/nmeth.1379
Source: PubMed

ABSTRACT Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineered artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alternative splicing in selected targets, to examine the activity of effector domains from natural splicing factors and to modulate splicing of an endogenous human gene, Bcl-X, an anticancer target. The designer factor targeted to Bcl-X increased the amount of pro-apoptotic Bcl-xS splice isoform, thus promoting apoptosis and increasing chemosensitivity of cancer cells to common antitumor drugs. Our approach permitted the creation of artificial factors to target virtually any pre-mRNA, providing a strategy to study splicing regulation and to manipulate disease-associated splicing events.

Download full-text

Full-text

Available from: Zefeng Wang, Jan 30, 2014
0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RBM10 encodes an RNA binding protein. Mutations in RBM10 are known to cause multiple congenital anomaly syndrome in male humans, the TARP syndrome. However, the molecular function of RBM10 is unknown. Here we used PAR-CLIP to identify thousands of binding sites of RBM10 and observed significant RBM10-RNA interactions in the vicinity of splice sites. Computational analyses of binding sites as well as loss-of-function and gain-of-function experiments provided evidence for the function of RBM10 in regulating exon skipping and suggested an underlying mechanistic model, which could be subsequently validated by minigene experiments. Furthermore, we demonstrated the splicing defects in a patient carrying an RBM10 mutation, which could be explained by disrupted function of RBM10 in splicing regulation. Overall, our study established RBM10 as an important regulator of alternative splicing, presented a mechanistic model for RBM10-mediated splicing regulation and provided a molecular link to understanding a human congenital disorder.
    EMBO Molecular Medicine 09/2013; 5(9):1431-42. DOI:10.1002/emmm.201302663 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to RNAP II during transcription activation. We report that SRSF2 (also known as SC35, an SR-splicing factor) is part of the 7SK complex assembled at gene promoters and plays a direct role in transcription pause release. We demonstrate RNA-dependent, coordinated release of SRSF2 and P-TEFb from the 7SK complex and transcription activation via SRSF2 binding to promoter-associated nascent RNA. These findings reveal an unanticipated SR protein function, a role for promoter-proximal nascent RNA in gene activation, and an analogous mechanism to HIV Tat/TAR for activating cellular genes.
    Cell 05/2013; 153(4):855-68. DOI:10.1016/j.cell.2013.04.028 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The control and function of RNA are governed by the specificity of RNA binding proteins. Here, we describe a method for global unbiased analysis of RNA-protein interactions that uses in vitro selection, high-throughput sequencing, and sequence-specificity landscapes. The method yields affinities for a vast array of RNAs in a single experiment, including both low- and high-affinity sites. It is reproducible and accurate. Using this approach,we analyzed members of the PUF (Pumilio and FBF) family of eukaryotic mRNA regulators. Our data identify effects of a specific protein partner on PUF-RNA interactions, reveal subsets of target sites not previously detected, and demonstrate that designer PUF proteins can precisely alter specificity. The approach described here is, in principle, broadly applicable for analysis of any molecule that binds RNA, including proteins, nucleic acids, and small molecules.
    Cell Reports 05/2012; 1(5):570-81. DOI:10.1016/j.celrep.2012.04.003 · 7.21 Impact Factor