Article

TRPC1 channels are critical for hypertrophic signaling in the heart.

Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
Circulation Research (Impact Factor: 11.09). 09/2009; 105(10):1023-30. DOI: 10.1161/CIRCRESAHA.109.206581
Source: PubMed

ABSTRACT Cardiac muscle adapts to increase workload by altering cardiomyocyte size and function resulting in cardiac hypertrophy. G protein-coupled receptor signaling is known to govern the hypertrophic response through the regulation of ion channel activity and downstream signaling in failing cardiomyocytes.
Transient receptor potential canonical (TRPC) channels are G protein-coupled receptor operated channels previously implicated in cardiac hypertrophy. Our objective of this study is to better understand how TRPC channels influence cardiomyocyte calcium signaling.
Here, we used whole cell patch clamp of adult cardiomyocytes to show upregulation of a nonselective cation current reminiscent of TRPC channels subjected to pressure overload. This TRPC current corresponds to the increased TRPC channel expression noted in hearts of mice subjected to pressure overload. Importantly, we show that mice lacking TRPC1 channels are missing this putative TRPC current. Moreover, Trpc1(-)(/)(-) mice fail to manifest evidence of maladaptive cardiac hypertrophy and maintain preserved cardiac function when subjected to hemodynamic stress and neurohormonal excess. In addition, we provide a mechanistic basis for the protection conferred to Trpc1(-)(/)(-) mice as mechanosensitive signaling through calcineurin/NFAT, mTOR and Akt is altered in Trpc1(-)(/)(-) mice.
From these studies, we suggest that TRPC1 channels are critical for the adaptation to biomechanical stress and TRPC dysregulation leads to maladaptive cardiac hypertrophy and failure.

0 Bookmarks
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective: To determine if Ca(2+) influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results: TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca(2+) entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca(2+) sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca(2+) leak. Conclusions: Ca(2+) influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.
    Circulation Research 07/2014; 115(6). DOI:10.1161/CIRCRESAHA.115.303831 · 11.09 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
    12/2014; 3(4):939-962. DOI:10.3390/cells3040939

Full-text (2 Sources)

Download
73 Downloads
Available from
May 22, 2014