Metagenomic study of the oral microbiota by Illumina high-throughput sequencing.

Genomic Research Laboratory, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
Journal of microbiological methods (Impact Factor: 2.43). 09/2009; 79(3):266-71. DOI: 10.1016/j.mimet.2009.09.012
Source: PubMed

ABSTRACT To date, metagenomic studies have relied on the utilization and analysis of reads obtained using 454 pyrosequencing to replace conventional Sanger sequencing. After extensively scanning the 16S ribosomal RNA (rRNA) gene, we identified the V5 hypervariable region as a short region providing reliable identification of bacterial sequences available in public databases such as the Human Oral Microbiome Database. We amplified samples from the oral cavity of three healthy individuals using primers covering an approximately 82-base segment of the V5 loop, and sequenced using the Illumina technology in a single orientation. We identified 135 genera or higher taxonomic ranks from the resulting 1,373,824 sequences. While the abundances of the most common phyla (Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria and TM7) are largely comparable to previous studies, Bacteroidetes were less present. Potential sources for this difference include classification bias in this region of the 16S rRNA gene, human sample variation, sample preparation and primer bias. Using an Illumina sequencing approach, we achieved a much greater depth of coverage than previous oral microbiota studies, allowing us to identify several taxa not yet discovered in these types of samples, and to assess that at least 30,000 additional reads would be required to identify only one additional phylotype. The evolution of high-throughput sequencing technologies, and their subsequent improvements in read length enable the utilization of different platforms for studying communities of complex flora. Access to large amounts of data is already leading to a better representation of sample diversity at a reasonable cost.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The upper respiratory tract (URT) is a crucial site for host defense, as it is home to bacterial communities that both modulate host immune defense and serve as a reservoir of potential pathogens. Young children are at high risk of respiratory illness, yet the composition of their URT microbiota is not well understood. Microbial profiling of the respiratory tract has traditionally focused on culturing common respiratory pathogens, whereas recent culture-independent microbiome profiling can only report the relative abundance of bacterial populations. In the current study, we used both molecular profiling of the bacterial 16S rRNA gene and laboratory culture to examine the bacterial diversity from the oropharynx and nasopharynx of 51 healthy children with a median age of 1.1 years (range 1-4.5 years) along with 19 accompanying parents. The resulting profiles suggest that in young children the nasopharyngeal microbiota, much like the gastrointestinal tract microbiome, changes from an immature state, where it is colonized by a few dominant taxa, to a more diverse state as it matures to resemble the adult microbiota. Importantly, this difference in bacterial diversity between adults and children accompanies a change in bacterial load of three orders of magnitude. This indicates that the bacterial communities in the nasopharynx of young children have a fundamentally different structure from those in adults and suggests that maturation of this community occurs sometime during the first few years of life, a period that includes ages at which children are at the highest risk for respiratory disease.The ISME Journal advance online publication, 9 January 2015; doi:10.1038/ismej.2014.250.
    The ISME Journal 01/2015; · 9.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing, high-throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterization of oral microbiota and analyzing the changes of the microbiome in the states of health or disease. Deep understanding the knowledge of microbiota will pave the way for more effective prevent dentistry and contribute to the development of personalized dental medicine.
    Frontiers in Microbiology 10/2014; 5:508. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effective and sensitive monitoring of human pathogenic bacteria in municipal wastewater treatment is important not only for managing public health risk related to treated wastewater reuse, but also for ensuring proper functioning of the treatment plant. In this study, 3 different 16S rRNA gene molecular analysis methodologies were employed to screen bacterial pathogens in samples collected at 3 different stages of an activated sludge plant. Overall bacterial diversity was analyzed using next generation sequencing (NGS) on the Illumina MiSeq platform, as well as PCR-DGGE followed by band sequencing. In addition, a microdiversity analysis was conducted using PCR-DGGE, targeting Escherichia coli. Bioinformatics analysis was performed using QIIME protocol by clustering sequences against the Human Pathogenic Bacteria Database. NGS data were also clustered against the Greengenes database for a genera-level diversity analysis. NGS proved to be the most effective approach screening the sequences of 21 potential human bacterial pathogens, while the E. coli microdiversity analysis yielded one (O157:H7 str. EDL933) out of the 2 E. coli strains picked up by NGS. Overall diversity using PCR-DGGE did not yield any pathogenic sequence matches even though a number of sequences matched the NGS results. Overall, sequences of Gram-negative pathogens decreased in relative abundance along the treatment train while those of Gram-positive pathogens increased.
    Environmental Science & Technology 09/2014; 48:11610-11619. · 5.48 Impact Factor


Available from

Similar Publications