AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice.

Experimental Genetics Group, Department of Human Genetics, KULeuven-Campus, Leuven, Belgium.
PLoS ONE (Impact Factor: 3.53). 10/2009; 4(10):e7280. DOI: 10.1371/journal.pone.0007280
Source: PubMed

ABSTRACT In Alzheimer's disease tauopathy is considered secondary to amyloid, and the duality obscures their relation and the definition of their respective contributions.Transgenic mouse models do not resolve this problem conclusively, i.e. the relative hierarchy of amyloid and tau pathology depends on the actual model and the genes expressed or inactivated. Here, we approached the problem in non-transgenic models by intracerebral injection of adeno-associated viral vectors to express protein tau or amyloid precursor protein in the hippocampus in vivo. AAV-APP mutant caused neuronal accumulation of amyloid peptides, and eventually amyloid plaques at 6 months post-injection, but with only marginal hippocampal cell-death. In contrast, AAV-Tau, either wild-type or mutant P301L, provoked dramatic degeneration of pyramidal neurons in CA1/2 and cortex within weeks. Tau-mediated neurodegeneration proceeded without formation of large fibrillar tau-aggregates or tangles, but with increased expression of cell-cycle markers.We present novel AAV-based models, which demonstrate that protein tau mediates pyramidal neurodegeneration in vivo. The data firmly support the unifying hypothesis that post-mitotic neurons are forced to re-enter the cell-cycle in primary and secondary tauopathies, including Alzheimer's disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease.
    PLoS ONE 02/2014; 9(2):e87605. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine fractalkine modulates microglial responses in neurodegenerative diseases, including tauopathies, but the mechanistic processes and their relevance in human brain pathologies is not yet known. Here, we show that hippocampal HT22 cells expressing human TAU(P301L) mutant protein produce fractalkine, which in microglia activates AKT, inhibits glycogen synthase kinase-3β and upregulates the transcription factor NRF2/NFE2L2 and its target genes including heme oxygenase 1. In a mouse model of tauopathy based on stereotaxic delivery in hippocampus of an adeno-associated viral vector for expression of TAU(P301L), we confirmed that tau-injured neurons express fractalkine. NRF2- and fractalkine receptor-knockout mice did not express heme oxygenase 1 in microglia and exhibited increased microgliosis and astrogliosis in response to neuronal TAU(P301L) expression, demonstrating a crucial role of the fractalkine/NRF2/heme oxygenase 1 pathway in attenuation of the pro-inflammatory phenotype. The hippocampus of patients with Alzheimer's disease also exhibits increased expression of fractalkine in TAU-injured neurons that recruit microglia. These events correlated with increased levels of NRF2 and heme oxygenase 1 proteins, suggesting an attempt of the diseased brain to limit microgliosis. Our combined results indicate that fractalkine mobilizes NRF2 to limit over-activation of microglia and identify this new target to control unremitting neuroinflammation in tauopathies.
    Brain 11/2013; · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal levels of mammalian target of rapamycin (mTOR) signaling have been recently implicated in the pathophysiology of neurodegenerative diseases, such as Alzheimer's disease (AD). However, the implication of mTOR in diabetes mellitus (DM)-related cognitive dysfunction still remains unknown. In the present study, we found that phosphorylated mTOR at Ser2448, phosphorylated p70S6K at Thr421/Ser424 and phosphorylated tau at Ser396 were significantly increased in the hippocampus of streptozotocin (STZ)-induced diabetic mice when compared with control mice. A low dose of rapamycin was used to elucidate the role of mTOR signaling in DM-related cognitive deficit. Rapamycin restored abnormal mTOR/p70S6K signaling and attenuated the phosphorylation of tau protein in the hippocampus of diabetic mice. Furthermore, the spatial learning and memory function of diabetic mice significantly impaired compared with control mice, was also reversed by rapamycin. These findings indicate that mTOR/p70S6K signaling pathway is hyperactive in the hippocampus of STZ-induced diabetic mice and inhibiting mTOR signaling with rapamycin prevents the DM-related cognitive deficits partly through attenuating the hyperphosphorylation of tau protein.
    Metabolic Brain Disease 03/2014; · 2.40 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014

Similar Publications