Article

Probing the gluon self-interaction in light mesons.

Institute for Nuclear Physics, Darmstadt University of Technology, 64289 Darmstadt, Germany.
Physical Review Letters (Impact Factor: 7.73). 09/2009; 103(12):122001. DOI: 10.1103/PHYSREVLETT.103.122001
Source: PubMed

ABSTRACT We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a calculation of the three-gluon vertex from its Dyson-Schwinger equation in Landau-gauge Yang-Mills theory. All tensor structures are considered and back-coupled self-consistently. Within the chosen truncation, two-loop diagrams as well as diagrams containing Green's functions beyond the primitively divergent ones are neglected. Only the three-gluon vertex is chosen to be dynamical; the other propagators and vertex functions are provided as separate solutions of their Dyson-Schwinger equations or by Ansatz. For both scaling- and decoupling-type solutions we observe, in agreement with other studies, a sign change in the tree-level tensor dressing at a non-perturbative scale.
    Acta Physica Polonica B, Proceedings Supplement 04/2014; 7(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The description of electromagnetic interactions with hadrons from the quark level requires knowledge of the underlying quark-gluon ingredients. I discuss some properties of the quark-photon vertex and quark Compton vertex, along with the role of electromagnetic gauge invariance and vector-meson dominance. A simple parametrization for the quark-photon vertex is given.
    Acta Physica Polonica B, Proceedings Supplement 04/2014; 7(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.
    04/2014;

Full-text (2 Sources)

Download
5 Downloads
Available from
Sep 22, 2014