Article

# Probing the gluon self-interaction in light mesons.

Institute for Nuclear Physics, Darmstadt University of Technology, 64289 Darmstadt, Germany.

Physical Review Letters (Impact Factor: 7.73). 09/2009; 103(12):122001. DOI: 10.1103/PHYSREVLETT.103.122001 Source: PubMed

- [Show abstract] [Hide abstract]

**ABSTRACT:**We present a calculation of the three-gluon vertex from its Dyson-Schwinger equation in Landau-gauge Yang-Mills theory. All tensor structures are considered and back-coupled self-consistently. Within the chosen truncation, two-loop diagrams as well as diagrams containing Green's functions beyond the primitively divergent ones are neglected. Only the three-gluon vertex is chosen to be dynamical; the other propagators and vertex functions are provided as separate solutions of their Dyson-Schwinger equations or by Ansatz. For both scaling- and decoupling-type solutions we observe, in agreement with other studies, a sign change in the tree-level tensor dressing at a non-perturbative scale.Acta Physica Polonica B, Proceedings Supplement 04/2014; 7(3). - [Show abstract] [Hide abstract]

**ABSTRACT:**The description of electromagnetic interactions with hadrons from the quark level requires knowledge of the underlying quark-gluon ingredients. I discuss some properties of the quark-photon vertex and quark Compton vertex, along with the role of electromagnetic gauge invariance and vector-meson dominance. A simple parametrization for the quark-photon vertex is given.Acta Physica Polonica B, Proceedings Supplement 04/2014; 7(3). - [Show abstract] [Hide abstract]

**ABSTRACT:**We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.04/2014;

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.