Direct Measurement of Sub-Debye-Length Attraction between Oppositely Charged Surfaces

Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
Physical Review Letters (Impact Factor: 7.51). 09/2009; 103(11):118304. DOI: 10.1103/PhysRevLett.103.118304
Source: PubMed


Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D<lambda(S) agrees well with predictions based on solving the Poisson-Boltzmann theory, when due account is taken of the independently-determined surface charge asymmetry (sigma(+) not equal to |sigma(-)|).

Download full-text


Available from: Nir Kampf, Oct 06, 2015
35 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A common method for creating hydrophobic monolayers on charged surfaces is by self-assembly of ionic surfactants from solution. Several factors are important in controlling the structure and properties of such layers: the hydrophobic interactions between adjacent chains, the electrostatic interactions between adjacent headgroups, and electrostatic interactions between the headgroups and the surface charges. We have discovered that the surfactant counterions can have a remarkable effect on the hydrophobicity and hydrophobic interactions of a self-assembled layer. The experimental system was stearoyl(C18)trimethylammonium surfactant with iodide, bromide or chloride counterion (STAI, STABr, and STACl respectively) self-assembled onto mica substrates. Changing the surfactant counterions alters the wetting properties of hydrophobic monolayers on mica. Using a surface force balance we have carried out direct measurements of the interaction force between two surfactant-coated surfaces across water, revealing a strong effect of counterion on the normal interactions. Paradoxically, STAI-coated mica has both the highest water contact angle (is 'most hydrophobic') at the same time as having the highest surface charge relative to STABr and STACl. We use measurements of interfacial tension, asymmetric force measurements, and XPS to lead us towards an interpretation of these results and an understanding of the effect of counterion on the structure of self-assembled monolayers.
    Faraday Discussions 01/2010; 146:309-24; discussion 367-93, 395-401. DOI:10.1039/B925569A · 4.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct force measurements between oppositely charged latex particles in aqueous electrolyte solutions were carried out with a multiparticle colloidal probe technique based on atomic force microscopy. Force profiles between two dissimilarly charged surfaces can be only described when charge regulation effects are taken into account, while constant charge or constant potential boundary conditions are inappropriate. Surface potentials and regulation parameters are determined from force data obtained in symmetric systems with the Poisson-Boltzmann theory and constant regulation approximation. The resulting quantities are used to predict the force profiles in asymmetric systems, and good agreement between theory and experiment is found. These findings show that charge regulation is important to quantify double-layer forces in asymmetric systems.
    Physical Review Letters 06/2010; 104(22):228301. DOI:10.1103/PhysRevLett.104.228301 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased.
    Langmuir 03/2011; 27(8):4439-46. DOI:10.1021/la1050282 · 4.46 Impact Factor
Show more