Article

Monitoring Dynamic Changes in Lymph Metabolome of Fasting and Fed Rats by Electrospray Ionization-Ion Mobility Mass Spectrometry (ESI-IMMS)

Washington State University, Pullman, Washington 99164, USA.
Analytical Chemistry (Impact Factor: 5.83). 10/2009; 81(19):7944-53. DOI: 10.1021/ac901030k
Source: PubMed

ABSTRACT Ambient pressure ion mobility time-of-flight mass spectrometry (IMMS) has recently emerged as a rapid and efficient analytical technique for applications to metabolomics. An important application of metabolomics is to monitor metabolome shifts caused by stress due to toxin exposure, nutritional changes, or disease. The research presented in this paper uses IMMS to monitor metabolic changes in rat lymph fluid caused by dietary stresses over time. Extracts of metabolites found in the lymph fluid collected from dietary stressed rats were subjected to analysis by electrospray (ESI) IMMS operated both in positive and negative ion detection mode. Metabolites detected were tentatively identified based on their mass to charge ratio (m/z). In one sample, 1180 reproducible tentative metabolite ions were detected in negative mode and 1900 reproducible tentative metabolite ions detected in positive mode. Only biologically reproducible ions, defined as metabolite ions that were measured in different rats under the same treatment, were analyzed to reduce the complexity of the data. A metabolite peak list including m/z, mobility, and intensity generated for each metabolome was used to perform principle component analysis (PCA). Dynamic changes in metabolomes were investigated using principle components PC1 and PC2 that described 62% of the variation of the system in positive mode and 81% of the variation of the system in negative mode. Analysis of variance (ANOVA) was performed for PC1 and PC2 and means were statistically evaluated. Profiles of intensities were compared for tentative metabolite ions detected at different times before and after the rats were fed to identify the metabolites that were changing the most. Mobility-mass correlation curves (MMCC) were investigated for the different classes of compounds.

1 Follower
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS-MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS-MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS-MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative applications. Here we review the current approaches for lipidomics research based on IMS-MS, including liquid chromatography-MS and direct-MS analyses of "shotgun" lipidomics and MS imaging.
    Analytical and Bioanalytical Chemistry 04/2015; DOI:10.1007/s00216-015-8664-8 · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is well-known to broadly impact cellular metabolism and aberrant metabolism in breast cancer tumors has been widely studied by both targeted and untargeted analyses to characterize the affected metabolic pathways. In this work, we utilize ultra-performance liquid chromatography (UPLC) in tandem with ion mobility-mass spectrometry (IM-MS), which provides chromatographic, structural, and mass information, to characterize the aberrant metabolism associated with breast diseases such as cancer. In a double-blind analysis of matched control (n=3) and disease tissues (n=3), tissues were homogenized, polar metabolites were extracted, and the extracts were characterized by UPLC-IM-MS/MS. Principle component analysis revealed a strong separation between disease tissues, with one diseased tissue clustering with the control tissues along PC1 and two others separated along PC2. Using post-ion mobility MS/MS spectra acquired by data-independent acquisition, the features giving rise to the observed grouping were determined to be biomolecules associated with aggressive breast cancer tumors, including glutathione, oxidized glutathione, thymosins β4 and β10, and choline-containing species. Pathology reports revealed the outlier of the disease tissues to be a benign fibroadenoma, whereas the other disease tissues represented highly metabolic benign and aggressive tumors. This IM-MS-based workflow bridges the transition from untargeted metabolomic profiling to tentative identifications of key descriptive molecular features using data acquired in one analysis, with additional experiments performed only for validation. The ability to resolve cancerous and non-cancerous tissues at the biomolecular level demonstrates UPLC-IM-MS/MS as a robust and sensitive platform for metabolomic profiling of tissues.
    Molecular BioSystems 09/2014; 10(11). DOI:10.1039/C4MB00250D · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.
    Journal of Mass Spectrometry 12/2010; 45(12):1383-93. DOI:10.1002/jms.1850 · 2.71 Impact Factor