Monitoring Dynamic Changes in Lymph Metabolome of Fasting and Fed Rats by Electrospray Ionization-Ion Mobility Mass Spectrometry (ESI-IMMS)

Washington State University, Pullman, Washington 99164, USA.
Analytical Chemistry (Impact Factor: 5.64). 10/2009; 81(19):7944-53. DOI: 10.1021/ac901030k
Source: PubMed


Ambient pressure ion mobility time-of-flight mass spectrometry (IMMS) has recently emerged as a rapid and efficient analytical technique for applications to metabolomics. An important application of metabolomics is to monitor metabolome shifts caused by stress due to toxin exposure, nutritional changes, or disease. The research presented in this paper uses IMMS to monitor metabolic changes in rat lymph fluid caused by dietary stresses over time. Extracts of metabolites found in the lymph fluid collected from dietary stressed rats were subjected to analysis by electrospray (ESI) IMMS operated both in positive and negative ion detection mode. Metabolites detected were tentatively identified based on their mass to charge ratio (m/z). In one sample, 1180 reproducible tentative metabolite ions were detected in negative mode and 1900 reproducible tentative metabolite ions detected in positive mode. Only biologically reproducible ions, defined as metabolite ions that were measured in different rats under the same treatment, were analyzed to reduce the complexity of the data. A metabolite peak list including m/z, mobility, and intensity generated for each metabolome was used to perform principle component analysis (PCA). Dynamic changes in metabolomes were investigated using principle components PC1 and PC2 that described 62% of the variation of the system in positive mode and 81% of the variation of the system in negative mode. Analysis of variance (ANOVA) was performed for PC1 and PC2 and means were statistically evaluated. Profiles of intensities were compared for tentative metabolite ions detected at different times before and after the rats were fed to identify the metabolites that were changing the most. Mobility-mass correlation curves (MMCC) were investigated for the different classes of compounds.

Download full-text


Available from: Prabha Dwivedi, Oct 09, 2015
1 Follower
30 Reads
    • "In the last few years IMS-MS was successively introduced in metabolomics, [26] [27] [28] proteomics, [29] [30] [31] [32] lipid analysis [33] and also in glycomics, [21,34–37] and in studies related to glycosylation dis- orders. [38] [39] However, so far IMS-MS has been much less applied to the field of lysosomal storage diseases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during the brain development. Previous reports have revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS-rich and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14 weeks-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was comparatively assessed. The analyses have indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, while the younger brain was found characterized by a higher sulfation of CS-rich regions. By multistage MS using collision induced-dissociation, we have also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties. Copyright © 2015. Published by Elsevier Inc.
    Analytical Biochemistry 06/2015; 485. DOI:10.1016/j.ab.2015.06.028 · 2.22 Impact Factor
  • Source
    • "We assayed the DA content from the ST of affected and control rats at various stages of disease progression by IMMS (Kaplan et al. 2009). The striatal tissue levels of DA were found to be highest in controls (110 ± 21 nmol/g wet wt, n = 4) much less in affected rats at 11 and 15 dpn (25.0 ± 24.0 nmol/g wet wt), and below detection limits (0.4 ± 1 nmol/g wet wt, n = 3) for affected rats at 20 dpn. "
    [Show abstract] [Hide abstract]
    ABSTRACT: J. Neurochem. (2012) 122, 812–822. Neuronal protein α-synuclein (α-syn) is an essential player in the development of neurodegenerative diseases called synucleinopathies. A spontaneous autosomal recessive rat model for neurodegeneration was developed in our laboratory. These rats demonstrate progressive increases in α-syn in the brain mesencephalon followed by loss of dopaminergic terminals in the basal ganglia (BG) and motor impairments. The severity of pathology is directly related to the overexpression of α-syn and parallel decrease in dopamine (DA) level in the striatum (ST) of affected rats. The neurodegeneration in this model is characterized by the presence of perikarya and neurites Lewis bodies (LB) and diffuse marked accumulation of perikaryal α-syn in the substantia nigra (SN), brain stem (BS), and striatum (ST) along with neuronal loss. Light and ultrastructural analyses revealed that the process of neuronal degeneration is a ‘dying back’ type. The disease process is accompanied by gliosis and release of inflammatory cytokines. This neurodegeneration is a multisystemic disease and implicate α-syn as a major factor in the pathogenesis of this inherited autosomal recessive animal model. Decrease dopamine (DA) and overexpression of α-syn in the brain mesencephalon may provide a naturally occurring animal model for Parkinson’s disease (PD) and other synucleinopathies that reproduces significant pathological, neurochemical, and behavioral features of the human disease.
    Journal of Neurochemistry 05/2012; 122(4):812-22. DOI:10.1111/j.1471-4159.2012.07805.x · 4.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix-assisted laser/desorption ionization (MALDI) time-of-flight mass spectrometry (TOF) has been investigated for use in the field of metabolomics; however, difficulties, mainly due to chemical interferences, are typically encountered. By coupling MALDI with ion mobility time-of-flight mass spectrometry (IMMS), isomers and isobars are resolved in mobility space reducing the chemical interference from matrix/background ions. MALDI-IMMS offers the advantages of high sensitivity, high throughput and low sample consumption. For this study, MALDI-IMMS was evaluated by monitoring metabolic changes in lymphatic fluid collected from fasting and fed rats. The number of metabolite features detected in the samples ranged between 1200 and 3400 depending on the duration between the feeding time and lymph sample collection. There were 747 metabolite features that were statistically analyzed by principal component analysis (PCA). From the 3-D score plots of PC1, PC2 and PC3 65 % of the original variation of the system was explained and the differences between the samples were demonstrated.
    International Journal for Ion Mobility Spectrometry 09/2012; 16(3). DOI:10.1007/s12127-012-0102-4
Show more