The mitochondrial citrate carrier: Metabolic role and regulation of its activity and expression

Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy.
International Union of Biochemistry and Molecular Biology Life (Impact Factor: 2.76). 10/2009; 61(10):987-94. DOI: 10.1002/iub.249
Source: PubMed

ABSTRACT The citrate carrier (CiC), a nuclear-encoded protein located in the mitochondrial inner membrane, is a member of the mitochondrial carrier family. CiC plays an important role in hepatic lipogenesis, which is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid and cholesterol synthesis. In addition, CiC is a key component of the isocitrate-oxoglutarate and the citrate-malate shuttles. CiC has been purified from various species and its reconstituted function characterized as well as its cDNA isolated and sequenced. CiC mRNA and/or CiC protein levels are high in liver, pancreas, and kidney, but are low or absent in brain, heart, skeletal muscle, placenta, and lungs. A reduction of CiC activity was found in diabetic, hypothyroid, starved rats, and in rats fed on a polyunsaturated fatty acid (PUFA)-enriched diet. Molecular analysis suggested that the regulation of CiC activity occurs mainly through transcriptional and post-transcriptional mechanisms. This review begins with an assessment of the current understanding of CiC structural and biochemical characteristics, underlying the structure-function relationship. Emphasis will be placed on the molecular basis of the regulation of CiC activity in coordination with fatty acid synthesis.

  • Source
    • "In rat, CIC activity was found to be decreased in diabetic and hypothyroid animals [11] [12]. Later, it has been shown that CIC gene promoter contains an active FOXA site and that FOXA1 controls glucose-stimulated insulin secretion in INS-1 cells by transcriptional regulation of the CIC gene [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The citrate carrier (CIC), a nuclear-encoded protein located in the mitochondrial inner membrane, plays an important metabolic role in the transport of acetyl-CoA from the mitochondrion to the cytosol in the form of citrate for fatty acid and cholesterol synthesis. Citrate has been reported to be essential for fibroblast differentiation into fat cells. Because peroxisome proliferator-activated receptor-gamma (PPARγ) is known to be one of the master regulators of adipogenesis, we aimed to study the regulation of CIC by the PPARγ ligand rosiglitazone (BRL) in 3T3-L1 fibroblasts and in adipocytes. We demonstrated that BRL up-regulated CIC mRNA and protein levels in fibroblasts, while it did not elicit any effects in mature adipocytes. The enhancement of CIC levels upon BRL treatment was reversed using the PPARγ antagonist GW9662, addressing how this effect was mediated by PPARγ. Functional experiments using a reporter gene containing rat CIC promoter showed that BRL enhanced CIC promoter activity. Mutagenesis studies, electrophoretic-mobility-shift assay and chromatin-immunoprecipitation analysis revealed that upon BRL treatment, PPARγ and Sp1 are recruited on the Sp1-containing region within the CIC promoter, leading to an increase in CIC expression. In addition, mithramycin, a specific inhibitor for Sp1-DNA binding activity, abolished the PPARγ-mediated up-regulation of CIC in fibroblasts. The stimulatory effects of BRL disappeared in mature adipocytes in which PPARγ/Sp1 complex recruited SMRT corepressor to the Sp1 site of the CIC promoter. Taken together, our results contribute to clarify the molecular mechanisms by which PPARγ regulates CIC expression during the differentiation stages of fibroblasts into mature adipocytes.
    Biochimica et Biophysica Acta 01/2013; 1831(6). DOI:10.1016/j.bbalip.2013.01.014 · 4.66 Impact Factor
  • Source
    • "Mitochondrial carriers (MCs), encoded in human by SLC25 genes, are membrane-embedded proteins that are normally localized in the inner membrane of mitochondria, where they confer a highly selective permeability and facilitate the flux of a large number of metabolites between mitochondria and cytosol (Hediger et al., 2004; Palmieri, 2004; Gnoni et al., 2009). Thus, MCs occupy a prominent position within eukaryotic cell intermediary metabolism . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence indicates that mitochondrial carriers are not only crucial for metabolism, but also important for embryonic development. Sideroflexin is a novel family of mitochondrial tricarboxylate carrier proteins, of which the in vivo function is largely unknown. Here, we report on the expression patterns of five sideroflexin genes in Xenopus embryos. Whole-mount in situ hybridization analysis reveals that while sideroflexin2 is expressed in the pancreas, sideroflexin1 and 3 display a complex expression in the central nervous system, somites, pronephros, liver, and pancreas. In contrast, only a weak expression of sideroflexin4 and 5 was detected in embryonic brain. Taken together, the five sideroflexin genes show both overlapping and nonoverlapping expression during Xenopus embryogenesis. As the primary structures of the five sideroflexin proteins are also quite similar, their functional redundancy should be taken into consideration for gene targeting studies.
    Developmental Dynamics 10/2010; 239(10):2742-7. DOI:10.1002/dvdy.22401 · 2.67 Impact Factor
  • Source
    • "The lacking decrease of ΔΨ m is apparently due to the absence of pyruvate carboxylase and PEP carboxykinase in heart mitochondria [48] [49]. In addition, PEP is transported into liver mitochondria by the tricarboxylate carrier [50], which does not occur in heart mitochondria [51] "
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (DeltaPsi(m)) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high DeltaPsi(m) values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of DeltaPsi(m) from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of DeltaPsi(m) is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of DeltaPsi(m) was found. From the data we conclude that high matrix ATP/ADP ratios keep DeltaPsi(m) at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the DeltaPsi(m)-independent "allosteric ATP-inhibition of CcO." Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by "respiratory control," based on DeltaPsi(m) according to the Mitchell Theory.
    Biochimica et Biophysica Acta 09/2010; 1797(9):1672-80. DOI:10.1016/j.bbabio.2010.06.005 · 4.66 Impact Factor
Show more