Article

Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase.

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
Biochemical Journal (Impact Factor: 4.78). 09/2009; 424(3):439-48. DOI: 10.1042/BJ20091221
Source: PubMed

ABSTRACT The Arabidopsis thaliana K+ channel KAT1 has been suggested to have a key role in mediating the aperture of stomata pores on the surface of plant leaves. Although the activity of KAT1 is thought to be regulated by phosphorylation, the endogenous pathway and the primary target site for this modification remained unknown. In the present study, we have demonstrated that the C-terminal region of KAT1 acts as a phosphorylation target for the Arabidopsis calcium-independent ABA (abscisic acid)-activated protein kinase SnRK2.6 (Snf1-related protein kinase 2.6). This was confirmed by LC-MS/MS (liquid chromatography tandem MS) analysis, which showed that Thr306 and Thr308 of KAT1 were modified by phosphorylation. The role of these specific residues was examined by single point mutations and measurement of KAT1 channel activities in Xenopus oocyte and yeast systems. Modification of Thr308 had minimal effect on KAT1 activity. On the other hand, modification of Thr306 reduced the K+ transport uptake activity of KAT1 in both systems, indicating that Thr306 is responsible for the functional regulation of KAT1. These results suggest that negative regulation of KAT1 activity, required for stomatal closure, probably occurs by phosphorylation of KAT1 Thr306 by the stress-activated endogenous SnRK2.6 protein kinase.

0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (-)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future.
    Frontiers in Plant Science 02/2015; 6:88. DOI:10.3389/fpls.2015.00088 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic responses to environmental stimuli are essential for the survival of multicellular organisms. In plants, they are initiated in response to many different signals including pathogens, wounding, and abiotic stresses. Recent studies highlighted the importance of systemic acquired acclimation to abiotic stresses in plants and identified several different signals involved in this response. These included reactive oxygen species (ROS) and calcium waves, hydraulic waves, electric signals, and abscisic acid (ABA). Here, we address the interactions between ROS and ABA at the local and systemic tissues of plants subjected to abiotic stress and attempt to propose a model for the involvement of ROS, ABA, and stomata in systemic signaling leading to systemic acquired acclimation. © 2015 American Society of Plant Biologists. All rights reserved.
    The Plant Cell 01/2015; DOI:10.1105/tpc.114.133090 · 9.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogen sulfide (H2S) is a newly discovered gaseous signaling molecule and involved in ethylene and ABA-induced stomatal closure. As an important factor, extracellular ATP (eATP) was believed to participate in regulation of stomatal closing. However, the mechanism by which eATP mediates H2S-regulated stomatal closure remains unclear. Here, we employed Arabidopsis wild-type and mutant lines of ATP-binding cassette transporters (Atmrp4, Atmrp5 and their double mutant Atmrp4/5) to study the function of eATP in H2S-regulated stomatal movement. Our results indicated that H2S affected stomatal closing through stimulating guard cell outward K+ current. Moreover, we found that H2S induced eATP generation by regulating the activity of an ABC transporter. The inhibitor of ABC transporters, glibenclamide (Gli), could impair H2S-regulated stomatal closure and reduce H2S-dependent eATP accumulation in Atmrp4 and Atmrp5 mutants. In addition, the promotion effect of H2S on outward K+ currents was diminished in Atmrp4/5 double mutant. Our data suggested that hydrogen peroxide (H2O2) is required for H2S-induced stomatal closure, and the production of H2O2 is regulated by eATP via NADPH oxidase. Based on this work, we conclude that H2S-induced stomatal closure requires ABC transporter-dependent eATP production and subsequent NADPH oxidase-dependent H2O2 accumulation.
    02/2015; 60(4). DOI:10.1007/s11434-014-0659-x

Full-text (2 Sources)

Download
30 Downloads
Available from
May 28, 2014