Article

Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase.

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
Biochemical Journal (Impact Factor: 4.78). 09/2009; 424(3):439-48. DOI: 10.1042/BJ20091221
Source: PubMed

ABSTRACT The Arabidopsis thaliana K+ channel KAT1 has been suggested to have a key role in mediating the aperture of stomata pores on the surface of plant leaves. Although the activity of KAT1 is thought to be regulated by phosphorylation, the endogenous pathway and the primary target site for this modification remained unknown. In the present study, we have demonstrated that the C-terminal region of KAT1 acts as a phosphorylation target for the Arabidopsis calcium-independent ABA (abscisic acid)-activated protein kinase SnRK2.6 (Snf1-related protein kinase 2.6). This was confirmed by LC-MS/MS (liquid chromatography tandem MS) analysis, which showed that Thr306 and Thr308 of KAT1 were modified by phosphorylation. The role of these specific residues was examined by single point mutations and measurement of KAT1 channel activities in Xenopus oocyte and yeast systems. Modification of Thr308 had minimal effect on KAT1 activity. On the other hand, modification of Thr306 reduced the K+ transport uptake activity of KAT1 in both systems, indicating that Thr306 is responsible for the functional regulation of KAT1. These results suggest that negative regulation of KAT1 activity, required for stomatal closure, probably occurs by phosphorylation of KAT1 Thr306 by the stress-activated endogenous SnRK2.6 protein kinase.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking. This article is protected by copyright. All rights reserved.
    The Plant Journal 10/2014; · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Potassium () is one of the most abundant cations in higher plant. It comprises about 10% of plant dry weight and it plays roles in numerous functions such as osmo- and turgor regulation, charge balance of plasma membrane and control of stomata and organ movement. Several potassium transporters and potassium channels regulate homeostasis in response to uptake systems. In this review, we describe the biological, biochemical and physiological characteristics of shaker like potassium channels in higher plant. Especially, we searched the rice genome databases and analysized expressed genes, genome structures and protein domain characteristics of shaker like potassium channels.
    Journal of Plant Biotechnology. 12/2010; 37(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Terrestrial plants rely on stomata, small pores in the leaf surface, for photosynthetic gas exchange and transpiration of water. The stomata, formed by a pair of guard cells, dynamically increase and decrease their volume to control the pore size in response to environmental cues. Stresses can trigger similar or opposing movements: for example, drought induces closure of stomata, whereas many pathogens exploit stomata and cause them to open to facilitate entry into plant tissues. The latter is an active process as stomatal closure is part of the plant's immune response. Stomatal research has contributed much to clarify the signalling pathways of abiotic stress, but guard cell signalling in response to microbes is a relatively new area of research. In this article, we discuss present knowledge of stomatal regulation in response to microbes and highlight common points of convergence, and differences, compared to stomatal regulation by abiotic stresses. We also expand on the mechanisms by which pathogens manipulate these processes to promote disease, for example by delivering effectors to inhibit closure or trigger opening of stomata. The study of pathogen effectors in stomatal manipulation will aid our understanding of guard cell signalling.
    New Phytologist 07/2014; · 6.37 Impact Factor

Full-text (2 Sources)

Download
20 Downloads
Available from
May 28, 2014