Article

Évolution des techniques de séquençage

Technologies de Laboratoire 01/2007;
Source: DOAJ

ABSTRACT La biologie analytique a connu depuis quelques années une grande révolution en conséquence des progrès technologiques de la biologie moléculaire appliquée au séquençage des génomes. En effet, connaître l’enchaînement complet des bases nucléotidiques qui constituent un génome, c’est connaître toute l’information nécessaire à la vie (du moins en théorie).Ce n’est que récemment, avec la mise en place des Programmes Génome, que de nombreux génomes, dont celui de l’être humain, sont aujourd’hui séquencés, et que d’autres génomes sont en voie de l’être dans des délais de plus en plus raccourcis. Ces réalisations spectaculaires, sont rendues possible grâce aux développements extraordinaires des techniques de séquençage que nous essayons de passer en revue dans cet article. Nous rappellerons dans un premier temps le principe de base et l’évolution des techniques traditionnelles (Sanger, Maxam et pyroséquençage). Nous discuterons les avantages et les inconvénients de chaque approche avant d’exposer la nouvelle génération de séquenceurs automatisés.

0 1
 · 
2 Bookmarks
 · 
327 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
    Nature 10/2005; 437(7057):376-80. · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: DNA sequencing by synthesis during a polymerase reaction using laser-induced fluorescence detection is an approach that has a great potential to increase the throughput and data quality of DNA sequencing. We report the design and synthesis of a photocleavable fluorescent nucleoside triphosphate, one of the essential molecules required for the sequencing-by-synthesis approach. We synthesized this nucleoside triphosphate by attaching a fluorophore, 4,4-difluoro-5,7-dimethyl-4-bora-3alpha,4alpha-diaza-s-indacene propionic acid (BODIPY), to the 5 position of 2'-deoxyuridine triphosphate via a photocleavable 2-nitrobenzyl linker. We demonstrate that the nucleotide analogue can be faithfully incorporated by a DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA-sequencing reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. These results indicate that the nucleotide analogue is an excellent substrate for Thermo Sequenase. We also systematically studied the photocleavage of the fluorescent dye from a DNA molecule that contained the nucleotide analogue. UV irradiation at 340 nm of the DNA molecule led to the efficient release of the fluorescent dye, ensuring that a previous fluorescence signal did not leave any residue that could interfere with the detection of the next nucleotide. Thus, our results indicate that it should be feasible to use four different fluorescent dyes with distinct fluorescence emissions as unique tags to label the four nucleotides (A, C, G, and T) through the photocleavable 2-nitrobenzyl linker. These fluorescent tags can be removed easily by photocleavage after the identification of each nucleotide in the DNA sequencing-by-synthesis approach.
    Proceedings of the National Academy of Sciences 02/2003; 100(2):414-9. · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Serial analysis of gene expression (SAGE) is a method used to obtain comprehensive, unbiased and quantitative gene-expression profiles. Its major advantage over arrays is that it does not require a priori knowledge of the genes to be analyzed and reflects absolute mRNA levels. Since the original SAGE protocol was developed in a short-tag (10-bp) format, several modifications have been made to produce longer SAGE tags for more precise gene identification and to decrease the amount of starting material necessary. Several SAGE-like methods have also been developed for the genome-wide analysis of DNA copy-number changes and methylation patterns, chromatin structure and transcription factor targets. In this protocol, we describe the 17-bp longSAGE method for transcriptome profiling optimized for a small amount of starting material. The generation of such libraries can be completed in 7-10 d, whereas sequencing and data analysis require an additional 2-3 wk.
    Nature Protocol 02/2006; 1(4):1743-60. · 8.36 Impact Factor

Full-text

View
4 Downloads
Available from