Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors

Rutgers Stem Cell Research Center, Rutgers University, Piscataway, New Jersey, United States of America.
PLoS ONE (Impact Factor: 3.23). 09/2009; 4(9):e7192. DOI: 10.1371/journal.pone.0007192
Source: PubMed

ABSTRACT MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation.
SOLiD ultra-deep sequencing identified >10(7) unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs.
Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation.

Download full-text


Available from: Jennifer Moore, Sep 28, 2015
44 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have identified microRNAs (miRNAs) in undifferentiated and differentiated mouse embryonic stem (ES) cells. Some of these appear to be ES cell specific, have related sequences, and are encoded by genomic loci clustered within 2.2 kb of each other. Their expression is repressed as ES cells differentiate into embryoid bodies and is undetectable in adult mouse organs. In contrast, the levels of many previously described miRNAs remain constant or increase upon differentiation. Our results suggest that miRNAs may have a role in the maintenance of the pluripotent cell state and in the regulation of early mammalian development.
    Developmental Cell 09/2003; 5(2):351-8. DOI:10.1016/S1534-5807(03)00227-2 · 9.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microRNAs (miRNAs) are an extensive class of small noncoding RNAs (18 to 25 nucleotides) with probable roles in the regulation of gene expression. In Caenorhabditis elegans, lin-4 and let-7 miRNAs control the timing of fate specification of neuronal and hypodermal cells during larval development. lin-4, let-7 and other miRNA genes are conserved in mammals, and their potential functions in mammalian development are under active study. In order to identify mammalian miRNAs that might function in development, we characterized the expression of 119 previously reported miRNAs in adult organs from mouse and human using northern blot analysis. Of these, 30 miRNAs were specifically expressed or greatly enriched in a particular organ (brain, lung, liver or skeletal muscle). This suggests organ- or tissue-specific functions for miRNAs. To test if any of the 66 brain-expressed miRNAs were present in neurons, embryonal carcinoma cells were treated with all-trans-retinoic acid to promote neuronal differentiation. A total of 19 brain-expressed miRNAs (including lin-4 and let-7 orthologs) were coordinately upregulated in both human and mouse embryonal carcinoma cells during neuronal differentiation. The mammalian ortholog of C. elegans lin-28, which is downregulated by lin-4 in worms via 3' untranslated region binding, was also repressed during neuronal differentiation of mammalian embryonal carcinoma cells. Mammalian lin-28 messenger RNAs contain conserved predicted binding sites in their 3' untranslated regions for neuron-expressed miR-125b (a lin-4 ortholog), let-7a, and miR-218. The identification of a subset of brain-expressed miRNAs whose expression behavior is conserved in both mouse and human differentiating neurons implicates these miRNAs in mammalian neuronal development or function.
    Genome biology 02/2004; 5(3):R13. DOI:10.1186/gb-2004-5-3-r13 · 10.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many of the currently established human embryonic stem (hES) cell lines have been characterized extensively in terms of their gene expression profiles and genetic stability in culture. Recent studies have indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Using both microarrays and quantitative PCR, we report here the differences in miRNA expression between undifferentiated hES cells and their corresponding differentiated cells that underwent differentiation in vitro over a period of 2 weeks. Our results confirm the identity of a signature miRNA profile in pluripotent cells, comprising a small subset of differentially expressed miRNAs in hES cells. Examining both mRNA and miRNA profiles under multiple conditions using cross-correlation, we find clusters of miRNAs grouped with specific, biologically interpretable mRNAs. We identify patterns of expression in the progression from hES cells to differentiated cells that suggest a role for selected miRNAs in maintenance of the undifferentiated, pluripotent state. Profiling of the hES cell "miRNA-ome" provides an insight into molecules that control cellular differentiation and maintenance of the pluripotent state, findings that have broad implications in development, homeostasis, and human disease states.
    Stem Cells and Development 01/2008; 16(6):1003-16. DOI:10.1089/scd.2007.0026 · 3.73 Impact Factor
Show more