Article

Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly.

Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
Eukaryotic Cell (Impact Factor: 3.18). 09/2009; 8(11):1792-802. DOI: 10.1128/EC.00219-09
Source: PubMed

ABSTRACT The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.

0 Followers
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP). The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN) and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP) and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.
    Journal of Toxicology 12/2013; 2013:279829. DOI:10.1155/2013/279829
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with Complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.
    Mitochondrion 11/2014; DOI:10.1016/j.mito.2014.02.005 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are the central hub of key cellular processes such as energy conversion, cell signaling, cell cycle regulation and cell differentiation. Therefore, mitochondrial biogenesis and protein translocation in particular have been the focus of intense research for now nearly half a century. In spite of remarkable progress the field has made, many of the proposed mechanisms remain controversial and none of the translocation pathways is yet understood at the high resolution level. . In this context, the present article is intended to identify and discuss current major open questions and unresolved issues in the field in hope that it will stimulate and engage the pursuit of current efforts and expose new directions. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular Biology 02/2015; 11(6). DOI:10.1016/j.jmb.2015.02.001 · 3.96 Impact Factor

Preview

Download
1 Download
Available from