Early lineage specification of long-lived germline precursors in the colonial ascidian Botryllus schlosseri.

Biology Department, Center for Developmental Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
Development (Impact Factor: 6.6). 10/2009; 136(20):3485-94. DOI: 10.1242/dev.037754
Source: PubMed

ABSTRACT In many taxa, germline precursors segregate from somatic lineages during embryonic development and are irreversibly committed to gametogenesis. However, in animals that can propagate asexually, germline precursors can originate in adults. Botryllus schlosseri is a colonial ascidian that grows by asexual reproduction, and on a weekly basis regenerates all somatic and germline tissues. Embryonic development in solitary ascidians is the classic example of determinative specification, and we are interested in both the origins and the persistence of stem cells responsible for asexual development in colonial ascidians. In this study, we characterized vasa as a putative marker of germline precursors. We found that maternally deposited vasa mRNA segregates early in development to a posterior lineage of cells, suggesting that germline formation is determinative in colonial ascidians. In adults, vasa expression was observed in the gonads, as well as in a population of mobile cells scattered throughout the open circulatory system, consistent with previous transplantation/reconstitution results. vasa expression was dynamic during asexual development in both fertile and infertile adults, and was also enriched in a population of stem cells. Germline precursors in juveniles could contribute to gamete formation immediately upon transplantation into fertile adults, thus vasa expression is correlated with the potential for gamete formation, which suggests that it is a marker for embryonically specified, long-lived germline progenitors. Transient vasa knockdown did not have obvious effects on germline or somatic development in adult colonies, although it did result in a profound heterochrony, suggesting that vasa might play a homeostatic role in asexual development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Allorecognition has been well-studied in the context of vertebrate adaptive immunity and recognition of the Major Histocompatibility Complex (MHC), which is the central event of vertebrate immune responses. Although allorecognition systems have been identified throughout the metazoa, recent results have shown that there is no apparent conservation or orthologous relationship between the mechanisms underlying this phenomenon in different organisms. Thus the origin of the vertebrate adaptive immune system as well as these other complex recognition systems is a complete mystery. This review will focus on allorecognition in Botryllus schlosseri, a basal chordate which undergoes a natural transplantation reaction following contact between two individuals, and, analogous to vertebrates, is controlled by a single locus. We will summarize each of the known candidate genes within this locus and their potential roles in allorecognition, and speculate on how these findings may in fact be revealing potential functional relationships between disparate allorecognition systems.
    Developmental and comparative immunology 04/2014; · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two modes of germ cell formation are known in animals. Specification through maternally inherited germ plasm occurs in many well-characterized model organisms, but most animals lack germ plasm by morphological and functional criteria. The only known alternative mechanism is induction, experimentally described only in mice, which specify germ cells through bone morphogenetic protein (BMP) signal-mediated induction of a subpopulation of mesodermal cells. Until this report, no experimental evidence of an inductive germ cell signal for specification has been available outside of vertebrates. Here we provide functional genetic experimental evidence consistent with a role for BMP signaling in germ cell formation in a basally branching insect. We show that primordial germ cells of the cricket Gryllus bimaculatus transduce BMP signals and require BMP pathway activity for their formation. Moreover, increased BMP activity leads to ectopic and supernumerary germ cells. Given the commonality of BMP signaling in mouse and cricket germ cell induction, we suggest that BMP-based germ cell formation may be a shared ancestral mechanism in animals.
    Proceedings of the National Academy of Sciences 03/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A description and update of the "egg-as-novelty" hypothesis is presented. It is proposed that the major animal phylum-characteristic suites of morphological motifs first emerged more than a half-billion years ago in multicellular aggregates and clusters that did not exhibit an egg-soma divergence. These pre-metazoan bodies were organized by "dynamical patterning modules" (DPMs), physical processes and effects mobilized on the new multicellular scale by ancient conserved genes that came to mediate cell-cell interactions in these clusters. "Proto-eggs" were enlarged cells that through cleavage, or physical confinement by a secreted matrix, served to enforce genomic and genetic homogeneity in the cell clusters arising from them. Enlargement of the founder cell was the occasion for spontaneous intra-egg spatiotemporal organization based on single-cell physiological functions - calcium transients and oscillations, cytoplasmic flows - operating on the larger scale. Ooplasmic segregation by egg-patterning processes, while therefore not due to adaptive responses to external challenges, served as evolutionarily fertile "pre-adaptations" by making the implementation of the later-acting (at the multicellular "morphogenetic stage" of embryogenesis) DPMs more reliable, robust, and defining of sub-phylum morphotypes. This perspective is seen to account for a number of otherwise difficult to understand features of the evolution of development, such as the rapid diversification of biological forms with a conserved genetic toolkit at the dawn of animal evolution, the capability of even obligatory sexual reproducers to propagate vegetatively, and the "embryonic hourglass" of comparative developmental biology.
    Biochemical and Biophysical Research Communications 04/2014; · 2.41 Impact Factor


Available from
May 26, 2014