Early lineage specification of long-lived germline precursors in the colonial ascidian Botryllus schlosseri.

Biology Department, Center for Developmental Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
Development (Impact Factor: 6.6). 10/2009; 136(20):3485-94. DOI: 10.1242/dev.037754
Source: PubMed

ABSTRACT In many taxa, germline precursors segregate from somatic lineages during embryonic development and are irreversibly committed to gametogenesis. However, in animals that can propagate asexually, germline precursors can originate in adults. Botryllus schlosseri is a colonial ascidian that grows by asexual reproduction, and on a weekly basis regenerates all somatic and germline tissues. Embryonic development in solitary ascidians is the classic example of determinative specification, and we are interested in both the origins and the persistence of stem cells responsible for asexual development in colonial ascidians. In this study, we characterized vasa as a putative marker of germline precursors. We found that maternally deposited vasa mRNA segregates early in development to a posterior lineage of cells, suggesting that germline formation is determinative in colonial ascidians. In adults, vasa expression was observed in the gonads, as well as in a population of mobile cells scattered throughout the open circulatory system, consistent with previous transplantation/reconstitution results. vasa expression was dynamic during asexual development in both fertile and infertile adults, and was also enriched in a population of stem cells. Germline precursors in juveniles could contribute to gamete formation immediately upon transplantation into fertile adults, thus vasa expression is correlated with the potential for gamete formation, which suggests that it is a marker for embryonically specified, long-lived germline progenitors. Transient vasa knockdown did not have obvious effects on germline or somatic development in adult colonies, although it did result in a profound heterochrony, suggesting that vasa might play a homeostatic role in asexual development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Allorecognition has been well-studied in the context of vertebrate adaptive immunity and recognition of the Major Histocompatibility Complex (MHC), which is the central event of vertebrate immune responses. Although allorecognition systems have been identified throughout the metazoa, recent results have shown that there is no apparent conservation or orthologous relationship between the mechanisms underlying this phenomenon in different organisms. Thus the origin of the vertebrate adaptive immune system as well as these other complex recognition systems is a complete mystery. This review will focus on allorecognition in Botryllus schlosseri, a basal chordate which undergoes a natural transplantation reaction following contact between two individuals, and, analogous to vertebrates, is controlled by a single locus. We will summarize each of the known candidate genes within this locus and their potential roles in allorecognition, and speculate on how these findings may in fact be revealing potential functional relationships between disparate allorecognition systems.
    Developmental and comparative immunology 04/2014; · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The colonial tunicate Botryllus schlosseri is a widespread filter-feeding ascidian that lives in shallow waters and is easily reared in aquaria. Its peculiar blastogenetic cycle, characterized by the presence of three blastogenetic generations (filtering adults, buds and budlets) and by recurrent generation changes, has resulted in over 60 years of studies aimed at understanding how sexual and asexual reproduction are coordinated and regulated in the colony. The possibility of using different methodological approaches, from classical genetics to cell transplantation, contributed to the development of this species as a valuable model organism for the study of a variety of biological processes. Here, we review the main studies detailing rearing, staging methods, reproduction and colony growth of this species, emphasizing the asymmetry in sexual and asexual reproduction potential, sexual reproduction in the field and the laboratory, and self- and cross-fertilization. These data, opportunely matched with recent tanscriptomic and genomic outcomes, can give a valuable help to the elucidation of some important steps in chordate evolution. © 2014 Wiley Periodicals, Inc.
    genesis 07/2014; · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.
    PLoS ONE 01/2014; 9(5):e96434. · 3.53 Impact Factor


Available from
May 26, 2014