Article

Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression.

Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
Brain research (Impact Factor: 2.46). 09/2009; 1305:47-63. DOI: 10.1016/j.brainres.2009.09.065
Source: PubMed

ABSTRACT Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2 to 14 of life; MS180), neonatal handing (15 min/day from days 2 to 14 of life; MS15), or normal animal facility rearing (AFR) control conditions with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the "lateral wings" of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders.

0 Bookmarks
 · 
104 Views
  • Gender Medicine 02/2011; 8(1):53-5. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adverse early life experiences (aELEs), such as child abuse, neglect, or trauma, increase lifetime vulnerability for mental illness. In this study, aELEs were modeled in c57bl/6 mice using the maternal separation (MS) paradigm, in which pups were separated for 180min/day (MS180), 15min/day (MS15), or left undisturbed (AFR) from postnatal day 2-14. As adults, pups that experienced MS15 or MS180 demonstrated decreases in tryptophan hydroxylase 2 (TPH2) and serotonin transporter mRNA in the dorsal raphe dorsalis and ventralis, and increases in glucocorticoid receptor mRNA in the dentate gyrus of the hippocampus. To investigate factors underlying shared expression between MS conditions, dam on-nest time and DNA methylation at the TPH2 promoter and 5' UTR were assessed. Post-reunion on-nest time increased as a function of separation duration, potentially serving as a mitigating factor underlying similar expression between MS conditions. TPH2 DNA methylation remained unchanged, suggesting changes in TPH2 mRNA are not mediated by changes in DNA methylation of this region. The shared pattern of expression between MS15 and MS180 conditions suggests a species- or strain- specific response to MS unique to c57bl/6 mice.
    Brain research 03/2013; · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings in epigenetics shed new light on the regulation of gene expression in the central nervous system (CNS) during stress. The most frequently studied epigenetic mechanisms are DNA methylation, histone modifications and microRNA activity. These mechanisms stably determine cell phenotype but can also be responsible for dynamic molecular adaptations of the CNS to stressors. The limbic-hypothalamic-pituitary-adrenal axis (LHPA) is the primary circuit that initiates, regulates and terminates a stress response. The same brain areas that control stress also react to stress dynamically and with long-term consequences. One of the biological processes evoking potent adaptive changes in the CNS such as changes in behavior, gene activity or synaptic plasticity in the hippocampus is psychogenic stress. This review summarizes the current data regarding the epigenetic basis of molecular adaptations in the brain including genome-wide epigenetic changes of DNA methylation and particular genes involved in epigenetic responses that participate in the brain response to chronic psychogenic stressors. It is concluded that specific epigenetic mechanisms in the CNS are involved in the stress response.
    Brain research bulletin 07/2013; · 2.18 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
May 19, 2014

Matthew Hale