The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines.

The Johnson and Johnson Skin Research Center, Consumer Product Worldwide, A Unit of Johnson and Johnson Consumer Companies, Inc, Skillman, NJ 08502, USA.
Experimental Dermatology (Impact Factor: 3.58). 09/2009; 19(10):865-72. DOI:10.1111/j.1600-0625.2009.00957.x
Source: PubMed

ABSTRACT Solar lentigines (SLs) are hyperpigmentary lesions presented on sun-exposed areas of the skin and associated with ageing. The molecular mechanism of SL initiation is not completely understood. Ultraviolet B (UVB) stimulates keratinocytes to produce interlukin-1 alpha (IL-1α), which then induces keratinocyte growth factor (KGF) secretion; therefore, we examined their possible roles in the induction of SLs. We found that KGF increases pigment production in both pigmented epidermal equivalents and human skin explants. In addition, UVB exposure increases KGF expression, and KGF treatment induces tyrosinase (TYR) expression in primary melanocytes. The KGF-induced pigmentary changes were confirmed using pigmented Yucatan swine, and human skins grafted onto immuno-deficient mice. In both model systems, the topical treatment with KGF, alone or in combination with IL-1α, resulted in the in vivo formation of hyperpigmentary lesions with increased pigment deposition and elongated rete ridges, which resemble the histological features of human SLs. Preliminary immunohistochemical analysis of human skins showed a moderate increase in KGF, and a strong induction in KGF receptor (KGFR) in SL lesions. In summary, KGF increases pigment production and deposition in vitro and in vivo. Moreover, we show for the first time the in vivo generation of hyperpigmentary lesions with histological resemblance to human SLs and indicate the involvement of KGF/KGFR in the molecular pathology of human SLs.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Although keratinocyte-derived factors are known to promote the proliferation and differentiation of human epidermal melanocytes, it is not fully understood whether fibroblast-derived factors work in a similar way. OBJECTIVE: The aim of this study is to clarify whether fibroblast-derived factors are involved in regulating the proliferation and differentiation of human melanocytes with or without keratinocytes using serum-free culture system. METHODS: Human epidermal melanoblasts and melanocytes were cultured in a serum-free growth medium supplemented with fibroblast-derived factors such as keratinocyte growth factor (KGF) with or without keratinocytes, and the effects of KGF on the proliferation and differentiation of melanocytes were studied. RESULTS: KGF stimulated the proliferation of melanoblasts in the presence of dibutyryl cAMP (DBcAMP), basic fibroblast growth factor (bFGF), transferrin (Tf), and endothelin-1 (ET-1). Although KGF stimulated the differentiation, melanogenesis, and dendritogenesis in the presence of DBcAMP, Tf, and ET-1 without keratinocytes, KGF required the presence of keratinocytes for the stimulation of melanocyte proliferation. CONCLUSION: These results suggest that fibroblast-derived KGF stimulates the proliferation of human melanoblasts in synergy with cAMP, bFGF, Tf, and ET-1, the differentiation of melanocytes in synergy with cAMP, Tf, and ET-1, and the proliferation of melanocytes in synergy with cAMP, Tf, ET-1, and undefined keratinocyte-derived factors.
    Journal of dermatological science 04/2013; · 3.71 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Solar lentigines are benign hyperpigmented skin lesions. Despite their widespread distribution, knowledge on the mechanisms of development are largely unknown. A clinical study was designed in which solar lentigines were characterised using various non-invasive clinical techniques. A subset of solar lentigines was followed over a 5 years timeperiod. One hundred and twenty eight solar lentigines were evaluated using in vivo reflectance confocal microscopy (RCM) for the evaluation of the length and density of their dermal papillae as well as the deformation of the alignment pattern of hyperrefractive basal cells. Skin colour, colour contrast, the size of the solar lentigo, epidermal proliferation rate, melanin and haemoglobin content were quantified. RCM imaging of solar lentigines revealed a profound structural deformation of the dermal papillae, as the alignment pattern of hyperrefractive basal cells shifted from a circle in non-lesional skin to an irregular non-circular shape in solar lentigines. There was a rise in the number of dermal papillae and these dermal papillae were significantly longer. Solar lentigines had increased melanin and haemoglobin levels and a higher rate of epidermal proliferation. For a sub-set of nineteen solar lentigines, a longitudinal study was set-up in which these measurements were repeated five years after the first evaluation. The deformation and the number of the hyperrefractive dermal papillary rings increased significantly over the five years time span. The size of the lesion increased and the skin colour became darker. RCM is a useful non-invasive clinical tool for the characterization of solar lentigines, in particular the compressive deformation of the dermal papillae. This deformation became more severe over a time period of five years. To our knowledge, this is the first time that the in vivo time dependent progression of solar lentigines was supported by RCM images, contributing to an improved understanding of the formation and progression of solar lentigines. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
    International journal of cosmetic science 10/2012;
  • [show abstract] [hide abstract]
    ABSTRACT: Skin pigmentation is a multistep process of melanin synthesis by melanocytes, its transfer to recipient keratinocytes and its degradation. As dyspigmentation is a prominent marker of skin ageing, novel effective agents that modulate pigmentation safely are being sought for both clinical and cosmetic use. Here, a number of plant extracts were examined for their effect on melanogenesis (by melanin assay and Western blotting) and melanin transfer (by confocal immunomicroscopy of gp100-positive melanin granules in cocultures and by SEM analysis of filopodia), in human melanocytes and in cocultures with phototype-matched normal adult epidermal keratinocytes. Mulberry, Kiwi and Sophora extracts were assessed against isobutylmethylxanthine, hydroquinone, vitamin C and niacinamide. Compared with unstimulated control, all extracts significantly reduced melanogenesis in human melanoma cells and normal adult epidermal melanocytes. These extracts also reduced melanin transfer and reduced filopodia expression on melanocytes, similar to hydroquinone and niacinamide, indicating their effectiveness as multimode pigmentation actives.
    Experimental Dermatology 01/2013; 22(1):67-9. · 3.58 Impact Factor